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Abstract—We present a methodology to accurately locate
persons indoors by fusing Inertial Navigation (INS) techniques
with active RFID technology. A foot-mounted IMU aided by the
Received Signal Strengths (RSS) obtained from several active
RFID tags, placed at known locations in a building, has been used.
Other authors have already integrated IMUs with RFID tags in
loosely-coupled Kalman Filter (KF) solutions [1], [2], [3]. They
feed the KF with the residuals of inertial- and RFID-calculated
positions; these approaches do not exploit the benefits of Zero
Velocity Updates (ZUPT). In this paper, we present a tight KF-
based INS/RFID integration using the residual between the INS-
predicted range-to-tag, and the range derived from a generic RSS
path-loss model. Our approach also includes ZUPTs at detected
foot stances, ZARU (Zero Angular-rate Update) estimation at still
phases, and heading drift reduction using magnetometers. A 15-
element error state Extended KF [4], [7] compensates position,
velocity and attitude errors of the INS solution, as well as IMU
biases. This methodology is valid for any kind of motion (forward,
lateral or backwards walk, at different speeds) and does not
require an specific off-line calibration, neither for the user gait,
nor for the location-dependent RSS fading in the building. The
integrated INS+RFID methodology eliminates the typical drift
of IMU-alone solutions (approximately 1% of the total travelled
distance), accounting for typical positioning errors along the
walking path (no matter its length) of approximately 1.5 meters.

I. INTRODUCTION

As GPS is essential for outdoor navigation, there is also a
growing need for accurate and continuous indoor localization.
Consequently, this topic has received a significant scientific
research attention during the last years. There are several
location-aware application fields that can benefit from indoor
localization, for example: intelligent spaces, personal or asset
tracking, guidance of persons with mobility problems, or first-
responders for rescue teams or emergencies.

Two main research approaches are used in the indoor
positioning problem: 1) Solutions that rely on the existence of
a network of receievers or emitters placed at known locations
(beacon-based solutions), and 2) Solutions that mainly rely
on dead-reckoning methods with sensors installed on the
person or object to locate (beacon-free solutions). The first-
type beacon-based approaches can use different technologies
for the estimation of range or angle between the mobile

object and the beacons; it is typical to use ultrasound, radio
(WiFi, UWB, RFID, Zigbee, etc.) or vision-based technologies
[8]. These beacon-based solutions are normally termed as
Local Positioning Systems (LPS). The second beacon-free
approaches are sometimes preferable since they do not depend
on a pre-installed infrastructure. During the last decade several
beacon-free methodologies based on inertial sensors have been
proposed for person’s location [4], [7], [9]. These methodolo-
gies, often called Pedestrian Dead-Reckoning (PDR) solutions,
integrate step lengths and orientation estimations at each
detected step, or alternatively directly integrate accelerometer
and gyroscope readings to compute the position and attitude
of the moving person.

IMU-based PDR solutions have the inconvenient of accu-
mulating errors that grow proportional to the path length. For
this reason, the integration of both IMU-based and beacon-
based LPS solutions has a clear benefit for finding a reliable,
continuous and accurate indoor positioning solution.

Other authors [1], [2] have already integrated IMUs with
RFID tags in loosely-coupled Kalman Filter (KF) solutions.
They feed the KF with the residuals between inertial- and
RFID-calculated positions. One of the drawbacks of these
implementations is that no Zero Velocity Updates (ZUPT)
were employed. Additionally, they use a loose integration,
whose performance is in general known to be worse than
in tight coupling [10]. In this paper, we present a KF-based
INS/RFID tight integration method using the residual between
the INS-predicted range to tag, and the range derived from
a generic RSS path-loss model. Our approach also includes
ZUPTs at detected foot stances, Zero Angular Rate Updates
(ZARU) at still phases, and heading drift reduction using
magnetometers. A 15-element error state Extended KF [4], [7]
compensates position, velocity and attitude errors of the INS
solution, as well as IMU biases. Our methodology is valid for
any kind of motion (forward, lateral, backwards walk, and so
on), and it does not require an specific off-line calibration,
neither for the user gait, nor for the location-dependent RSS
fading in the building.

The paper is organized as follows. The next section, presents
the IMU and RFID sensors used for the indoor location tests.
Section III presents a model to relate RSS values to tag-to-978-1-4244-5864-6/10$26.00 c© IEEE
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Fig. 1. Sensors used for integrated IMU + RFID navigation. An Xsens IMU
is attached to the right foot using the shoe’s laces. The RFID reader is on
user’s waist. Tags are distributed on walls at approximately a 2 m height.

reader distances. Section IV describes the KF-based INS/RFID
tight integration method, and finally, section V performs an
evaluation of several indoor localization tests. Conclusions are
given in last section.

II. IMU AND RFID SENSORS

A. IMU

We use a commercially available IMU, model MTi
from Xsens Technologies B.V (Enschede, The Nether-
lands; www.xsens.com). Its size is 58 × 58 × 22 mm
(Length × Width × Height), and it weights 50 grams. It is
configured to provide inertial data at 100 Hz.

The IMU has three orthogonally-oriented accelerometers,
three gyroscopes and three magnetometers. The accelerom-
eters and gyroscopes are solid state MEMS with capacita-
tive readout, providing linear acceleration and rate of turn,
respectively. Magnetometers use a thin-film magnetoresistive
principle to measure the earth magnetic field.

This work uses the IMU mounted on the foot of a person in
order to take advantage of Zero Velocity Updates (ZUPT) at
foot stances. Fig.1 shows the Xsens sensor fixed to the right
foot of a person, using the shoe laces. The exact position and
orientation of the IMU on the foot is not important for the
algorithms that process the sensor data.

B. RFID

We use active RFID technology from the company RF Code
Inc. (Austin, Texas, USA; www.rfcode.com). In our solution
we use several tags located at fixed positions within a building,
and a portable RFID reader attached to use’s waist (Fig. 1).

1) RFID tags: We use active tags model M100, that are
battery-powered RF transmitters operating in the 433 MHz
radio band. Every tag broadcasts its unique ID and a status
message at a periodic rate (1 Hz repetition rate was pro-
grammed at the factory). The size of each tag is 46.74 ×
34.28 × 11.68 mm (L × W × H). Each tag weights 14.1
grams, including a lithium battery (model CR2032) which is
a replaceable coin cell. The expected lifetime is more than 7
years with one emission every 12.5 seconds (according to the
manufacturer), so for 1 Hz emission rate the battery lifetime
it is expected to be about 6 months. Tags can be put into
sleep mode (emissions disabled) using a tag activity controller,
model A600 from RFCode; this option is useful to preserve
batteries when the system is not to be used during long periods
of time.

2) RFID reader: Among the available RF Code readers,
we use the model M220 because it is a light-weight portable
battery-powered reader. It processes the signals coming from
neighboring active RFID tags, and can communicate to a
Bluetooth-enabled host processor (PC, PDA, smart phone),
and also by a wired USB-serial connection (Bluetooth 1.1
and USB 2.0). The maximum read-out distance between the
reader and the tags is up to 70 meters in ideal conditions (free
space). The RFID reader is equipped with two short range
stub antennas. It is also possible to install 1/4-wave articulated
helical antennas for operating at larger distances. Each reader
reports the RSS information at each antenna for every in-range
tag. The reader size is 111 × 76.5 × 25.1 mm (L × W × H),
and it only weights 147 g.

III. RFID ACQUISITION AND RSS MODELING

A. RSS data acquisition

We have deployed 71 RFID tags in our CAR-CSIC main
building (see Fig. 2). The total space inside our building is
2200 m2. The initial selected tag density is about 1 tag every
30 m2. This tag density is relatively high, but we decided to
use enough tags in order to be able in the future to study the
influence of the tag density on the final positioning results.

RSS data-collection experiments were performed by placing
the RFID reader at several static positions within the building.
The collected RSS data plotted versus the tag-to-reader range
(see Fig. 3) clearly shows the typical stochastic nature of
RSS measurements caused by multiple fading, reflections,
refractions, and multi-paths that are common in complex
indoor environments. RSS values, for this specific RFCode
reader, ranges from 40 to 110, corresponding a value of 40 to
the maximum signal strength, and values approaching 110 for
the weakest signals.

The data presented in Fig. 3 corresponds to a total of 32
different reader positions along the main hall and corridor of
the CAR-CSIC building. In each position, 1 minute measure-
ments were taken, with 4 different orientations (approximately
15 seconds for each orientation).
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Fig. 2. Distribution of 71 RFID tags (red circles) in our main building.

Fig. 3. RSS values versus the tag-to-reader distance. The RSS values captured
by both antennas within the reader are coded in different color.

B. RSS-to-distance model

The registered RSS value between the emission of a tag
and the reception by a reader, depends on a large number of
unpredictable factors (specially indoors). However, there are
other factors such as the distance between the emitter and the
reader that influence, in a predictable manner, the expected
RSS value; this dependency can be used in a RSS model.

The attenuation caused by the distance d between an emitter
and a reader, is known as the path loss [5]. This attenuation
is inversely proportional to the distance between emitter and
receiver raised to an exponent that is know as the path loss
exponent p. This exponent p equals 2 for an ideal spherical
dispersion in free space, or it can be lower than 2 for propaga-
tion along waveguides (e.g. corridors), or larger than 2 when
multipath, refraction, or shadowing occurs in the propagation
media (typical in buildings). The received power (PR) at the

reader can be modelled as:

PR ∝ PT · Gt · Gr

4πdp
, (1)

where PT is the transmitted power at the emitter, Gt and Gr

are the antenna gains of transmitter and receiver, respectively,
d is the distance between emitter and receiver, and p is the
path loss exponent. Using logarithmic units in eq. 1, and
considering that RSS is the received power in decibels, we
obtain:

RSS = RSS0 − 10 · p · log10

(
d

d0

)
+ v, (2)

where RSS0 is a mean RSS value obtained at a reference
distance d0, and v is a Gaussian random variable with zero
mean and standard deviation σRSS that accounts for the random
effect of shadowing [6]. From equation 2 the maximum
likelihood estimate of distance d is given by:

d = d0 · 10
RSS0−RSS

10·p . (3)

We obtained the unknown parameters RSS0 and p, by fitting
the experimental data presented in Fig. 3 to the RSS-distance
model (eq. 3). We found, for a reference distance d0 of 1 meter,
that RSS0 equals 60 and p is -2.3 (both parameters have been
rounded). The minus sign in the path loss exponent accounts
for the inverse dependence of RFCode RSS read-out vs. power
(decreasing values of RSS represent stronger signals).

The experimental standard deviation of RSS values, σRSS,
has been found to be an almost distance-independent constant.
This value was found to be about 6 RSS units (σRSS = 6). In
order to obtain the standard deviation of the estimated distance,
σd, which is needed by a Kalman filter as an indication of
the belief we have on the modelled range value, we use the
following heuristic assumption: σd must be equal to σRSS when
the slope in model of eq. 3 is 1, and in general it should be
reasonably estimated as inversely proportional to the slope of
the distance model. If we differentiate eq. 2 with respect to
distance d to obtain the slope, we get:

∂RSS
∂d

= −10 · p · 1
ln(10)

· d0

d
· 1
d0

, (4)

Consequently, the sought standard deviation of distance (σd)
to be used in our model is:

σd = σRSS · ln(10) · d
−10 · p . (5)

This sigma model is linearly proportional to distance, so it
gives low standard deviation values at short ranges (low un-
certainty) and a larger sigma at long ranges (high uncertainty).
The combined model representation of RSS versus distance (d
and σd) is depicted in Fig. 4.

IV. THE INTEGRATED IMU+RFID POSITIONING METHOD

Before presenting the RFID integration method, we quickly
review in the next subsection the basic framework of estima-
tion with an IMU alone, since this framework is the core of
the subsequent RFID integration.
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Fig. 4. RSS to distance model. The standard deviation in distance, σd (dashed
line), is symmetric at both sides of the model plot (solid line).

A. IMU-alone IEZ+ method

The IMU-alone IEZ+ method is a Pedestrian Dead-
Reckoning (PDR) positioning method, that was recently pre-
sented by Jiménez et al. [7]. This method is an extension of
the ZUPT Kalman-based methodology presented by Foxlin
[4]. The name of IEZ+ method is a contraction of these
acronyms: IMU-EKF-ZUPT-Extended, that stands for “Inertial
Measurement Unit - Extended Kalman Filter - Zero Velocity
Update - Extended”. The reader of this paper is referred to
Jiménez et al. [7] for implementation details, nevertheless
some key aspects will be highlighted here.

IEZ+ performs an Inertial Navigation (INS) on the foot’s
position based on IMU readings. This INS process, which is
prone to accumulate errors due to IMU biases, is corrected
by a 15-element state vector of an Extended Kalman filter
(EKF): X = [δAt, δωb, δPo, δVe, δab]. This vector contains the
estimated biases for accelerometers and gyroscopes (δab and
δωb, respectively), as well as, the 3D errors in orientation or
attitude (δAt), position (δPo), and velocity (δVe).

The EKF is updated (correction phase) with velocity mea-
surements by the ZUPT strategy every time the foot is on the
floor. Additionally, the EKF is updated with information about
the angular rate of gyroscopes when the foot is still for more
than a second (no walking, e.g. standing or sitting). The latter
update process is called ZARU, and provides a very good
method (fully observable) to quickly find an approximation of
gyroscope biases. IEZ+ also incorporates electronic compass
information as a quite effective way to limit the drift in head-
ing. Heading errors derived from magnetometer measurements
are integrated in the correction/prediction phases of the EKF
with the gyro-based error orientation estimations.

The IEZ+ method, using only the self-contained information
of the IMU, has proven to be a very reliable PDR method, with
accumulated errors of approximately 1% of the total travelled
distance [7], [4]. However, over long-distance trajectories
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Fig. 5. IEZ+ methodology integrated with RFID measurements for drift-
free pedestrian position estimation. Additional blocks for RFID integration
are highlighted in gray color.

this dead-reckoning method can not avoid to progressively
diverge from the true path. The integration of external RFID
measurements within the IEZ+ (next section) will help to solve
this problem.

B. Integration of RFID measurements

We aid the IEZ+ method by means of a tight integration
using range residuals estimated from RFID signal strengths.
In contrast to other approaches [1], [2], [3] that initially
estimate the position using a separate RFID-LPS system and
then incorporate positions into the Kalman filter in a loose
integration, we use the range-based tight approach which is
known to have better performance in GPS and other range-
based application areas [10].

The implemented RFID-aided INS indoor pedestrian navi-
gator is depicted in Fig. 5. The whole block diagram corre-
sponds to the IEZ+ methodology that has been complemented,
in order to include the RFID information, with three additional
blocks: 1) RFID reader, 2) range predictor, and 3) RSS to
distance model (blocks in light-gray in Fig.5).

The RFID reader block represents the acquisition phase of
RSS values with the M220 RFCode sensor. This RFID data
is collected at a 10 Hz update rate. In our implementation we
use the average of pairs of RSS values at both antennas, so
if n tag emissions are captured at both antennas then n RSS
mean values, RSSRFID

(1..n), are used.
The second additional block in Fig. 5 is a range pre-

dictor, which basically provides the tags-to-reader predicted



distances, dINS
(1..n), i.e. a set of distances between the known

positions of detected tags and the current reader (person)
position estimated at INS.

The third additional block in Fig. 5 (RSS to distance model)
transforms the RSS values into range data using the model in
equation 3 as described in last section. The range residual,
δd(1..n) = dINS

(1..n) − dRFID
(1..n), is fed into the EKF at a 10 Hz

rate.

V. INDOOR LOCALIZATION TESTS

A. IMU-alone estimation

In this subsection, we analyze the performance of the pro-
posed methodology, but without using the RFID information,
i.e. the performance of the IEZ+ method. The IEZ+ method,
already presented and assessed in Jiménez et al. paper [7],
demonstrated a positioning error of about 1% of the Total
Travelled Distance (TTD). The results were very satisfactory,
but in that work the paths under evaluation consisted in just
one repetition of a given trajectory. Using trajectories where
the initial position and the final one were coincident, the
total positioning error, was about 1 meter for 100-meter-long
trajectories. It is expected, due to the dead-reckoning nature
of IEZ+ method, that the final accumulated error will grow by
increasing the length of the trajectory, or by repeating several
times the same trajectory, even although the percentage with
respect to the TTD should remain still about 1%.

Now, we present a set of four indoor tests in our main
building, that were repeated several times until the accumu-
lated positioning error was significant (larger than 5 meters).
In these tests, we just use a IEZ+ processing, i.e. using the
IMU-alone and not the RFID information. However, during
these tests we also recorded the sensed RFID data so as to
have the opportunity to replicate exactly the same tests in next
subsection, but in that case integrating both IMU and RFID
data.

The registration of data was performed by a person wearing
an IMU on the right foot and an RFID reader on the right
side of his waist, both sensors were connected by USB to a
netbook computer. The person walks at a normal pace (1 m/s)
in forward direction. The doors in the building were opened
in order to facilitate the navigation, but the system also works
well if the person has to stop to open a door or to wait for
another person in his path to pass. Some trajectories include
180 degrees turns when the go and return trajectories coincide.

The four tests together with the estimated trajectories using
IEZ+ (IMU-alone) are displayed in Fig. 6. The start position
is marked with a black square, and the final position with a
black circle and a magenta arrow indicating the direction of the
person. The small dots along the trajectory (approximately 1.4
meters apart each other along the path) represents the detected
right-foot stances.

As expected, the repetition of the same trajectory several
times has finally caused a drift of the position estimation
towards an arbitrary direction, and the total error, measured as
the distance between the final and initial positions, has grown
proportional to the path length or the number of iterations. In

Fig. 6a, a 600 meter-long path obtained with 8 repetitions, the
error is accumulated at a rate of almost 0.63 meters per cycle,
and the start/stop total error is about 5 meters, i.e. 0.8% of total
travelled distance. In Fig. 6b, a 550 meter-long path obtained
with 13 repetitions, the error is accumulated at a rate of almost
0.77 meters per cycle, and the final error is about 10 meters,
i.e. 1.8% of total travelled distance. In Fig. 6c, a 520 meter-
long path obtained with 8 repetitions, the error is accumulated
at a rate of almost 0.7 meters per cycle and the final error
is 7.7 meters, i.e. 1.4% of total travelled distance. Finally, in
Fig. 6d, a 1000 meter-long path is obtained repeating 8 times
a cycle that includes indoor navigation, and a partial outdoor
path along a patio. The error is accumulated at a rate of almost
1.4 meters per cycle, and the total accumulated error is 11.5
meters, i.e. 1.1% of total travelled distance. In these 4 tests the
averaged error percentage with respect to the TTD is 1.27%.

B. Integrated IMU+RFID estimation

It is expected that the results obtained in Fig. 6 should be
corrected by aiding the IMU-alone processing with an absolute
positioning reference given by the RFID equipment. In this
section we present the results of the full integrated processing
method as presented in section IV. This methodology should
limit the total error growth and keep it constant to a value that
depends on the maximum accuracy obtainable by an RFID-
LPS system (about 2 meters according to most papers in
literature [12], [11]), and consequently, the error should not
grow with the path length or number of iterations. The same
trajectories than in Fig. 6 tests are now displayed in Fig. 7
with the full processing. The position of the installed RFID
tags are now displayed on the building maps in Fig. 7 using
a red circle.

The presented results are totally satisfactory for pedestrian
indoor location. At a first look in Fig. 7, it is clear that the
positioning drift is now eliminated when the RFID information
is used. The contribution of RFID ranging information, in spite
of having a highly stochastic behavior, is incorporated into the
final estimation in such a way that the estimated trajectory is as
smooth as in the IMU-alone case (Fig. 6). The total error is of
0.8, 2.3, 1.2 and 1 meter, respectively, for Figures 7a, b, c and
d. On average, for these 4 tests, the total final error is 1.35
meters (as expected, about 2 meters). The error percentage
with respect to the TTD has no sense in this case since it will
tend to zero as the path length increases.

VI. CONCLUSIONS

In this paper, we have presented a tight KF-based INS/RFID
integration method for indoor pedestrian localization and
navigation. This method uses the residuals between the INS-
predicted range to tag, and the range derived from a generic
RSS model. We have shown that the methodology based
on a general purpose RSS-to-distance model, does not re-
quire a building-specific adaptive calibration for the location-
dependent RSS fading in the building. Additionally, since
the methodology is based on INS, it does not need any
calibration for the user gait (fast/slow, lateral, backwards
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Fig. 6. Different localization tests using the IMU-alone (no RFID information). Several closed cycles are performed along each path (8, 13, 11 and 8
repetitions), with a total length of 600, 550 , 520 and 1000 m, for tests a, b, c, and d, respectively. The total start to stop accumulated errors are 5, 10, 7.7
and 11.5 meters, i.e. in terms of the percentage of the total travelled distance, the error were 0.8% 1.8% 1.4% and 1.1%, respectively.

motion). Pedestrian navigation using only an IMU on the foot,
has been shown to slowly drift over long paths or repeated
local trajectories. However, our combined integration of INS
and RFID information has proven to limit that positioning
drift according to the accuracy provided by the network of
RFID tags (1 meter for high density of tags, and 3 m for
a low density). These results imply that a very accurate
pedestrian navigation or guidance is feasible with IMU and
RFID technology.

Future work will include the analysis of how the positioning
performance is influenced by different settings in the selected
RSS-to-distance model parameters, and also how the RFID tag
density in the building influences the positioning results. The
already attained positioning accuracy is planned to be further
improved by integrating the map-building information into the

system; in that case, we expect to reach 1 meter accuracy with
a very low density of tags.
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[8] A.R. Jiménez, F. Seco, C. Prieto, and J. Roa, “Tecnologı́as sensoriales
de localización para entornos inteligentes,” in I Congreso español de
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