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Abstract—The calibration (measurement of the position) of a
network of wireless nodes used for indoor localization purposes
is a tedious process and prone to errors if done manually.
This paper presents a method for the autocalibration of that
network, using the measurement of the received signal strength
(RSS) of RF signals coming from the nodes, and captured while
a person is taking a random walk in the environment. The
calibration method is adapted from a Simultaneous Localization
and Mapping (SLAM) technique from Robotics, and is based on a
Bayesian particle filter modeling the unknown position of the user
and the location of the beacons. Information coming from RSS
measurements is incorporated to the filter using a rather generic
measurement model (the path loss law), producing a sequence of
beacon nodes position estimates with decreasing uncertainty over
time. The accuracy and convergence of the method can be further
enhanced by using pedestrian dead-reckoning (PDR) techniques
from the handheld smartphone used to capture the RF data.
The method is demonstrated with a deployment of 60 unknown
position active RFID tags (and 4 known position tags) in an
indoor environment, and a trajectory lasting 1054 s. The results
are a median beacon positioning error of 4.9 m using only the
RSS information, and 3.4 m if PDR information is incorporated
to the particle filter. This error can be further decreased by
adding the results of more calibration routes.

I. INTRODUCTION

Most indoor location systems are based on signal transmis-

sions from a set of static beacon nodes to the user’s current

position; then an estimate of the user location can be obtained

by processing some physical measurements such as time-

of-arrival, received signal strength, etc [1]. The location of

the beacon nodes themselves is assumed to be known and

its obtention a part of the positioning system deployment

process. This calibration stage, however, is tedious and prone

to human error [2]. Considering that, in some circumstances,

the beacon network might be altered without warning (for

example, wifi access points might be installed or removed),

or the network be modified frequently (for example, nodes

embedded in mobile stands in an exhibition fair, which can be

displaced daily), it would be convenient to have at our disposal

an autocalibration method which permits quick and accurate

retrieval of the current node positions (referred to a map)

from in situ measurements and some additional information.

In particular, we are interested in crowdsourcing techniques

which demand minimum attention from the users. Such a

procedure is presented in this work.

We point out that location systems calibration is usually

associated with machine learning techniques for localization

(such as fingerprint), where the exact location of the beacons

is not required, and the calibration process consists in the

generation of a radio map instead [3]. In the current work,

however, we refer to the calibration of the beacon network

as the computation of the beacon locations as physical co-

ordinates in a map, for later use in parametric localization

methods.

A. Related work

In the event that all nodes can communicate among them,

such as in wireless sensor networks (WSN), the calibra-

tion problem is addressed with cooperative localization tech-

niques [4]. This is not feasible in the wireless networks

designed for one direction communication (beacons to user or

viceversa) commonly employed for indoor individual localiza-

tion. In ultrasonic [5], [6] or ultrawideband radio positioning

systems [7], where direct range estimation from beacons to

user is available, the calibration of the network can be posed

as problem of inverted localization, and beacon positions

are computed with the same algebraic equations used for

localization of the mobile nodes. Applying a similar strategy

to signal strength-based indoor positioning systems is more

challenging due to the large variance of measured values for

a given physical range between emitter and receiver, and the

usual problem of non existence of line-of-sight between them.

Bayesian techniques, such as those previously developed

by the Robotics community for the Simultaneous Location

and Mapping (SLAM) problem are well suited for handling

measurements with large uncertainties [8]. Some researchers

have translated these methods to the indoor localization field.

One example is the “war-driving” technique used to map the

position of unknown wifi access points as they are detected [9].

However, war-driving relies on the user being able to access

an external positioning system (usually GNSS) to localize

himself and then infer the location of the detected wifi access

points, which is not be practical in indoor environments with

no satellite coverage.

Mapping techniques not requiring any external device are

based in pedestrian dead reckoning (PDR) estimates. For

example, the FootSLAM method, introduced in [10], uses a

SLAM technique to correct the drift of PDR trajectories and

generate a map of the environment, with no additional sensors.

The WiSLAM system [11] further extends this technique to

estimate the location of wifi access points; however, only two
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APs are positioned experimentally, and a full evaluation of

the calibration performance of this technique is not given.

Additionally, FootSLAM methods require installation of a

foot-mounted inertial motion unit, which is not always feasible

in practical situations.

Crowdsourcing methods use the data collected (perhaps un-

knowingly) by users in an environment to generate information

useful for navigation. The system presented in [12] is very

similar to the work in this paper; however, it is oriented to

generation of a radio map of the environment (as usable by

fingerprinting methods), and not specifically to the location

of the RF emitters. More closely related to our work is the

system described in [13], in which beacon locations (and addi-

tionally, propagation parameters) are estimated from unknown

trajectories of people. The approach followed by the authors is

based on least squares minimization of a cost function related

to beacon locations, unlike the current contribution, which is

based in Bayesian techniques.

The novelty of the present work is introducing a Bayesian-

based crowdsourcing technique which permits the calibration

(defined as the determination of their physical locations in

a floorplan) of static RF emitting beacons, from the RSS

measurements gathered by users which move freely in the

environment, without requisites on their displacement trajec-

tories or any special action from their part, or the installation

of additional sensors such as inertial motion units (although it

can benefit from them).

The remainder of this paper is organized in the follow-

ing way. Section II introduces the general approach of the

Bayesian method for autocalibration of a wireless positioning

network, and then a step-by-step description of the adaptation

of the FastSLAM technique to such goal. Section III presents

the experimental device for the demonstration of the perfor-

mance of the methods, and section IV the experimental results

along with an analysis of the obtained positioning accuracy.

Finally, we expose some conclusions and point to future lines

to expand the current work.

II. THEORY

A. The Bayesian approach to calibration

This paper presents a calibration method based upon the

FastSLAM algorithm developed in Robotics for the classic

SLAM (Simultaneous Localization and Mapping) problem, in

which a robot navigates an unknown environment, simultane-

ously localizing itself and creating a map of its environment.

Translating this scheme to the calibration of a wireless posi-

tioning network, the idea is that, during a short, random walk

taken by a person covering the displacement area, an automatic

method can recover the position of all unknown nodes (that

have a unique identification code), and additionally provide

an estimate of his own path (see Figure 1). Some additional

information such as measurement parameters and the location

of a few anchor nodes is provided before calibration.

In the Bayesian framework, the beacon locations and the

user’s trajectory are formulated as probability distributions.

Fig. 1. Autocalibration process. The real trajectory (xt) and the actual beacon
locations (xbj ) are shown in black, while signal strength measurements
(RSSjt) received at time t are represented by blue dashed lines. Green filled
ellipses denote beacon position estimates with mean µjt and covariance error
Σjt, and the green continuous line the estimate of the user’s trajectory.

Then the objective of the autocalibration process is computing

the following posterior probability [14]:

p(x0:t,xb | z0:t,u0:t), (1)

where x0:t is the trajectory followed by the person from time

0 to time t, xb = {xbj , j = 1, . . . , Nb} is the position

of the beacon nodes to be calibrated, z0:t is the set of

signal strength measurements received from time 0 to time t,
and (optionally) u0:t corresponds to displacement information

provided by some inner sensor (in our case, the inertial motion

unit contained in the smartphone) in the same time interval.

We are interested in a recursive solution of Equation 1, which

refines the beacon position estimates as more measurements

are acquired.

The FastSLAM method, introduced in [15], decomposes

the problem into tracking of the user position and individual

estimation of the beacon positions, which are conditionally

independent once the user’s trajectory is known - or estimated.

The posterior probability of Equation 1 is factorized in the

following way:

p(x0:t,xb | z0:t,u0:t) = p(xb |x0:t, z0:t)p(x0:t | z0:t,u0:t),
(2)

where, due to the conditional independence of the beacon

locations,

p(xb |x0:t, z0:t) =

Nb
∏

j=1

p(xbj |x0:t, z0:t). (3)

Due to the partition in Equation 2 (Rao-Blackwellization),

we can represent the beacon locations analytically, and we only

have to sample the user’s trajectory. This is the key property of

the FastSLAM approach which allows to keep the complexity

of the problem linear with the number of beacons.

To sample the user’s location we use a particle filter

(PF), which contains multiple hypotheses on the shape of the
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posterior of Equation 1, with each particle of the filter having

the following structure:

Xk
t = {xk

t , y
k
t , µ

k
1t,Σ

k
1t, µ

k
2t,Σ

k
2t, . . . , µ

k
Nbt

,Σk
Nbt

, wk
t }, (4)

where k = 1, . . . , Np is the particle index, Np is the number

of particles, (xk
t , y

k
t ) is the user’s position at time t, and

(µk
jt,Σ

k
jt) are the estimated mean position and covariance error

of the j-th beacon. The last element of Equation 4 is the weight

wk
t , which stands for the relative probability of the hypothesis

represented by that particle. Weights are normalized such that
∑

k w
k
t = 1.

Two further relationships are needed to process the sensorial

information with Bayesian filters. The first is the observation

or measurement model, relating the received measurement

with the current user and beacon location:

p(zj |x,xbj). (5)

The second is the motion model which describes the state

transition:

p(xt |xt−1,ut), (6)

where displacement ut is measured with a motion sensor

carried by the user. Suitable observation and motion models

for our problem are given in the following section.

B. Adaptation of FastSLAM method to the autocalibration of

a sensor network

The FastSLAM particle filter adapted to the calibration

process is shown in Figure 2, and is explained below step

by step. The goal is estimating the two-dimensional location

of Nb beacons, from which we can receive signal strength

readings (RSS) emitted periodically. The identity of the emit-

ting beacon is contained in the received RF message and is

known unambiguously. We also assume that there is also a

small set of anchor beacons at known locations; with them we

can refer the estimated coordinates of the unknown beacons

to the floorplan of the building.

The PF updates sequentially the different states of Xk
t

for each particle as RSS readings or motion information are

produced. Discrete index t stands for time instants where new

information is available for the PF.

Initialization. To accommodate the particle structure in

Equation 4, let x be a 2 × Np array containing the user

location estimate, and µ (size 2 × Nb × Np) and Σ (size

2 × 2 × Nb × Np) be two arrays representing the mean and

covariance of the location of the beacons for each particle.

Indices j = 1, . . . , Nb and k = 1, . . . , Np stand respectively

for the beacon and particle index. We initialize µk
j0 to random

values in our environment, and Σk
j0 to the identity matrix

multiplied by a large constant the size of our building or

larger. The initial user position, xk
0 , can be taken anywhere in

our building, or in the correct start position, say with room

accuracy (the issue of initialization of the PF is discussed

in section IV-C). Particle weights are initially assigned to a

constant value, wk
0 = 1/Np.

These initial values define a proposal distribution for Xk
0 .

The PF next measures how this proposal fits the experimental

RSS measurements from the detected beacons, and updates

the particle weights and beacon location estimates.

RSS measurement from an anchor beacon. Upon re-

ception of signal strength measurement zt (associated to an

anchor beacon), we correct particle weights depending on the

difference between the expected and the actual measurements.

For particle k, the predicted measurement is:

ẑkt = h(xk
t ,xa),

where xa is the (known) anchor beacon location, and h
is the measurement function which relates the positions of

the beacon and user with the measurement. As measurement

model we will use the standard path loss law [16]:

z = h(x,xa)+ez = RSS0−10α log10
‖x− xa‖

d0
+eRSS, (7)

where d0 is a reference distance, RSS0 is the signal strength

at distance d0, α is the path loss exponent, and eRSS represents

fading noise that will be modeled as Gaussian distributed,

eRSS ∼ N (0, σ2
RSS). The particle weights are updated in order

to increase the probability of particles whose location better

matches the experimental RSS reading:

wk
t = wk

t ·
1

√

2πσ2
RSS

exp(−
(zt − ẑkt )

2

2σ2
RSS

). (8)

RSS measurement from an unknown position beacon.

Upon reception of signal strength measurement zt (associated

to beacon j at an unknown location), both the user position

and the estimated beacon location need to be updated in the

PF. The predicted RSS value for the k-th particle:

ẑkt = h(xk
t , µ

k
j,t−1),

where h is again the path loss law (Equation 7), and we use the

mean estimate of the beacon location, µk
j,t−1 for each particle.

Update beacon location. This is done analytically with the

Extended Kalman Filter (EKF) equations. Let H(x,xbj) =
∂h(x,xbj)

∂xbj
be the Jacobian of the nonlinear function h with

respect to the position of the j-th emitting beacon.

Using Equation 7, we evaluate this Jacobian at positions

(xk
t , µ

k
j,t−1):

H =
10α

‖xk
t − µk

j,t−1‖
2
(xk

t − µk
j,t−1)

T .

The Kalman gain is then computed as:

K = Σk
j,t−1H

T (HΣk
j,t−1H

T +Qt)
−1,

where Qt is a scalar covariance value. The mean and covari-

ance of the observed j−th beacon are updated as:

µk
j,t = µk

j,t−1 +K(zt − ẑkt ) (9)

Σk
j,t = (1−KH)Σk

j,t−1, (10)

for all particles (k), while the estimates for the remaining

beacons maintain undisturbed.
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Fig. 2. Block diagram of the different stages of the autocalibration method, as explained in section II-B.

Particle weight update The particle weights are updated

with the actual RSS readings in a similar way as Equation 8:

wk
t = wk

t ·
1

√

2π|Q|
exp(−

(zt − ẑkt )
2

2Q
), (11)

with Q = HΣk
j,t−1H

T +Qt.

Generation of a proposal distribution. Periodically, a

new proposal distribution for Xt must be produced from the

previous Xt−1, by resampling the particles and displacing the

coordinates of the user location, so his motion can be correctly

tracked. In our implementation, this new proposal is generated

in any of these three events: (a) a given time has elapsed since

the last resampling, (b) a step taken by the user has been

detected (if PDR information is available), (c) a degeneracy

condition is detected. We explain each circumstance now.

Particle displacement and resampling (without PDR) In

the case where no motion information is available, or if a given

time Tmax has passed without detecting a step, all particles are

displaced from their current position by:

xk
t = xk′

t−1 + δx
ykt = yk

′

t−1 + δy,
(12)

where (δx, δy) are sampled from a uniform distribution in the

circle defined by δ2x + δ2y ≤ v2maxT
2
max, and particle index k′ is

drawn from the set k′ ∈ {1, . . . , Np} with probability wk
t−1.

Particle displacement and resampling (with PDR) Parti-

cle displacement can be done more efficiently if we have direct

motion measurements. Pedestrian Dead Reckoning (PDR)

algorithms use data provided by the inertial motion unit con-

tained in a conventional smartphone, and produce a sequence

of steps of the form [17]: {lt, θt}, where t is the time where a

step is completed, lt is the step length and θt the orientation of

the user (or trajectory heading). For each detected step, the k-

th particle’s position is updated from the previously estimated

position (xt−1, yt−1) as:

xk
t = xk′

t−1 + (lt + δl) cos(θt + δθ)

ykt = yk
′

t−1 + (lt + δl) sin(θt + δθ),
(13)

where δl and δ∆θ are Gaussian modelled disturbances on both

the step length and estimated orientation, which are distributed

according to δl ∼ N (0, σ2
lPDR) and δθ ∼ N (0, σ2

θPDR). The

index k′ is chosen in the same way as in Equation 12.

Particle degeneracy. This condition happens when the

number of particles with significant weights is greatly reduced,

leading to particle impoverishment. In our implementation,

we compute the number of effective particles (as defined

in [18]), and perform a resampling step (without motion), if it

falls below threshold Np/10. This event occurs rarely in our

experiments.

In any of the three instances of particle resampling, the

particle states corresponding to the beacons mean position

and covariance error are resampled from the same probability

distributions as the user coordinates: µk
jt = µk′

jt , Σ
k
jt = Σk′

jt .

Additionally, all weights are reassigned to a constant value,

wk
t = 1/Np.

After resampling, a new proposal distribution for Xt is

produced, which will be weighted as new RF signals arrive.

This process is repeated recursively until all the data obtained

during the trajectory has been processed. It is expected that

the particle ensemble mean {µk
jt} converge to the true beacon

locations {xbj}, while the covariances {Σk
jt} decrease as more

RF readings are acquired.

III. EXPERIMENTAL DEVICE

We use RFID technology provided by RFCode (see Fig-

ure 3), consisting in a set of active tags (model M100) placed

at fixed positions in our research building, and a portable

reader (model M220) attached to the user’s hip, equipped

with two 1/4 wave articulated helical antennas. The reader

decodes the RF signal transmitted at 433 MHz by the tags

and reports the tag ID, the measured RSS at both antennas

and a timestamp to an Android-based mobile phone through

a Bluetooth link. Additionally, the accelerometer, gyroscope

and magnetometer signals from the inertial motion unit (IMU)

of the phone are sampled at an average rate of 50 Hz,

which is high enough for PDR algorithms. GNSS data (when

available) is also acquired by the program, but not used in our

experiments, a difference with the war-driving techniques for

network calibration. RFID technology is used for convenience,

given our previous experience with the system; however the

autocalibration technique is applicable to any RF-based indoor

positioning system which provides RSS measurements, such

as wifi or Bluetooth.

The tag detection range in our indoor environment is 20 m

for 50% percent of emissions. We have used a setup with
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Fig. 3. Experimental device for demonstration of the autolocalization method,
consisting of several active RFID tags, an RFID reader, and a smartphone.

Fig. 4. Floorplan. The objective of the autocalibration method is finding the
location of 60 unknown position tags (hollow circles); additionally, there are
4 known location tags or anchors (full circles). The dimensions of the building
are 65 × 40 m; its area 1600 m2.

64 tags distributed in our building (shown in Figure 4), of

which only 4 are taken as anchor nodes with known positions,

and the remaining 60 are beacons whose locations must be

estimated. Anchor beacons are used for convenience to refer

all positions to a common frame of coordinates; however the

autocalibration procedure can be carried out with all nodes

having unknown positions, although the positioned nodes

would not be referred to a particular coordinate system.

SLAM algorithms exist in two versions: with and with-

out known correspondence, meaning that the received mea-

surements can be associated unambiguously with a emitting

beacon in the environment or not. In our experiments, this

correspondence is obtained from the unique identification

number encoded in the RF signal emitted by each RFID

tag. This would be the case too for wifi access points or

Bluetooth tags, using their respective Media Access Control

(MAC) addresses.

A. Algorithm parameters

The parameters for the FastSLAM algorithm applied to au-

tocalibration of the RFID network are summarized in Table I.

Values for RSS0, α and σRSS were obtained in previous works

with the same setup [19], and are average values valid for both

line of sight (LOS) and non-line of sight (NLOS) situations

in our building. Our general experience with Equation 7 as

TABLE I
PARAMETERS FOR THE AUTOCALIBRATION ALGORITHM

Path loss law (Equation 7)

Emitted RSS at ref. distance RSS0 -61.5 dBm
Loss exponent α 2.30 dBm
Reference distance d0 1 m

Particle filter

Number of particles Np 10,000

RSS noise variance (Equation 8) σ2

RSS
102 dBm2

Kalman covariance (Equation 11) Qt 202 dBm2

Motion model (Equations 12 and 13)

Resampling time Tmax 2 s
Maximum speed vmax 2 m/s
Noise on step length σlPDR 0.3 m
Noise on heading angle σθPDR 0.3 rad

Fig. 5. Approximate actual trajectory followed by the user for the calibration
of the sensor network in Figure 4, reconstructed from PDR information and
RF beacon corrections.

a measurement model in indoor localization problems is that

it is convenient to use a conservative (i.e., large) value for

the measurement noise variance, so the PF does not become

overconfident on some RSS values.

We have used Np = 10, 000 particles for the autocalibration

PF; an increase in the number of particles does not improve

the performance of the method significantly.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the experiments carried out to assess the performance

of the autocalibration method, a person walks in our building

(remaining mostly indoors) carrying the smartphone and the

RFID reader. This person is not required to follow a predefined

trajectory or pass through determinate landmarks (as usual

in fingerprinting calibration), but instead performs a natural,

roughly circular route, from which most of the tags can be

detected by the reader at one instant.

One such trajectory is shown in Figure 5, consisting of two

loops through the interior part of our building. The length of

this sample trajectory is 714 m and its duration 1054 s. This

“groundtruth” trajectory has been reconstructed approximately

from the PDR deduced displacement with corrections from the

RFID beacons (however, the trajectory itself is not available

for the autocalibration methods evaluated next). During the

time taken to traverse this route, we received 1500 readings

from the 4 anchor tags, and 25,700 readings from the 60 un-

known location tags.
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Fig. 6. Results of the FastSLAM-based autocalibration algorithm, using
only RSS data. Top: estimated trajectory; bottom: estimated positions for the
60 unknown location RFID tags, along with the 90% confidence ellipse for
each.

A. Beacon positioning with RSS-only measurements

We first show the autocalibration results obtained when

only RSS readings are used, and no PDR information is

available (the motion model of the PF takes the simple form in

Equation 12) in Figure 6, both for the reconstructed trajectory

and the estimated position of the unknown beacons. We have

initialized the user’s position with particles distributed at

random in the correct room. The obtained median positioning

error for the beacons is 4.9 m. We can see that, while in

the interior part of the building most beacons are correctly

located, those in the periphery have larger errors; in many

cases the 90% confidence ellipse does not contain the true

beacon position. The estimated user trajectory is also largely

deviated from the groundtruth shown previously in Figure 5.

B. Enhancement with PDR

Use of Pedestrian Dead Reckoning data in the particle

displacement stage (Equation 13) improves the estimation of

the user’s trajectory and, consequently, the estimates of the

beacon locations. The IMU signals are processed with a step

and heading system (SHS) [17] which produces a sequence of

step lengths with orientation (heading) for the motion model

of Equation 13. The step length lt of a walking person is

estimated from the vertical motion (bounce) of the upper body,

Fig. 7. Results of the FastSLAM-based autocalibration algorithm, using RSS
and PDR data. Top: estimated trajectory; bottom: estimated positions for the
60 unknown location RFID tags, along with the 90% confidence ellipse for
each.

measured by the phone accelerometer, while the heading θt at

each step is measured with the magnetometer. This provides

reasonably accurate results in our building, although it may

exhibit problems in buildings with metallic parts [20]. Step

detection is not perfect: some steps are missed, and extraneous

ones can be detected, for example when a door is opened with

an arm, and its motion is coupled to the opposite arm holding

the phone.

The results of the RSS+PDR autocalibration are shown in

Figure 7. The median positioning error for the beacons is

reduced to 3.4 m, and the estimated trajectory is also improved,

more closely resembling the groundtruth in Figure 5.

C. Analysis of results

Positioning with the autocalibrated network. Figure 8

show positioning examples obtained with a particle filter

(without using PDR) using the calibrated beacon positions

estimated in the last section, for a simple C-shaped trajectory

along the main corridor in our building. The top trajectory is

obtained using only RSS-signals from the 4 anchor nodes; the

results are poor due to the low number of nodes. The bottom

one is computed with the RSS-signals of the 60-node network

(without the anchor nodes) with the node positions given

in Figure 6, showing how the trajectory can be successfully

tracked with the calibrated network. Although it may seem

that the positioned nodes obtained through autocalibration are

very approximate, they produce sensible positioning results in

practice (albeit with dense networks).
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Fig. 8. Tracking of a simple C-shaped trajectory (green trace) by a particle
filter with the RSS signals (without using PDR information) obtained from a
network with only 4 anchor nodes (top); the calibrated network of Figure 6
(60 beacons, no anchor nodes) (bottom). Similar tracking performance is
obtained with the calibrated network of Figure 7.

The effect of initialization. The user’s position part of

the particle filter (coordinates (xk
0 , y

k
0 ) in Equation 4) can be

initialized at random locations in the building or at the true

position with, for example, room accuracy (however, the coor-

dinates for the beacon locations, {µk
j0}, are always initialized

to random values within the building). In practice, this depends

on whether the user will start the autocalibration process from

a predetermined location, or completely at random. The impact

of initialization on the convergence and final accuracy of the

autocalibration method is shown in Figure 9. We see that,

while both the RSS-based and the RSS+PDR-based filters

converge more slowly when initialized at random locations,

the effect is relatively minor for the second case, since PDR

data helps the estimate of the user’s position to get “back in

track” relatively quickly.

Crowdsourcing measurements. From Figure 9 it is appar-

ent that the beacons positioning error decreases with traversed

distance, implying that better accuracy can be obtained with

sufficiently long trajectories. One positive feature of the auto-

calibration technique presented in this work is that it is accu-

mulative: data from consecutive experiments can be used to

progressively improve the estimation of the beacons. Since the

calibration routes can be performed by different persons, the

method lends itself to crowdsourcing measurement campaigns.

In Figure 10, we show the beacon position estimation

obtained by combining five different experiments, totaling a

traveled distance of 4470 m in 6110 s. The median positioning

error is reduced to 2.3 m. A few RFID tags still have abnor-

mally large location errors, which can be probably attributed

to physical problems with them (for example, low charge in

their batteries or being surrounded by materials with high
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Fig. 9. Effect of the user position’s initialization (at random points in the
building or in the correct room) on the convergence speed and obtained beacon
location accuracy, for the RSS-based and RSS+PDR-based versions of the
autocalibration method.

Fig. 10. Estimated beacon locations, accumulating the measurements obtained
with 5 different routes. The median positioning error is 2.3 m, although a few
beacon estimates remain largely deviated from their true locations.

attenuation). We are investigating this issue to obtain a better

explanation of the behaviour of these beacons.

Histogram with beacon positioning results. A histogram

showing the calibrated beacons position error is shown in

Figure 11, for one experiment using RSS signals only (sec-

tion IV-A), RSS signals combined with PDR (section IV-B),

and for the accumulated run of five different routes.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have demonstrated that a Simultaneous Lo-

calization and Mapping (SLAM) technique from Robotics can

be used for the autocalibration (determination of the physical

position) of a beacon network such as those used for indoor

local positioning systems. The technique is computationally

efficient and converges to the true location of the beacons

for most of them, in spite of using noisy signal strength

measurements from the received RF signals. Unlike inverse

localization or fingerprinting calibration, the method does not
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Fig. 11. Histogram with the beacon positioning error after calibration. The
median positioning errors are 4.9 m (RSS only), 3.4 m (RSS and PDR
combined), and 2.3 m (RSS+PDR, accumulated for several routes).

require the user to follow a predefined course, to position

himself at given coordinate points, or to record his location

periodically. Instead, the user walks along an arbitrary route

while the calibration is performed automatically.

The autocalibration is improved if a simple PDR algorithm

is used to process the signals acquired from a low grade

IMU sensor of a conventional smartphone carried by hand. In

one demonstration trajectory of length 714 m, we achieved a

median positioning error of 3.4 m for a network of 60 beacons;

this accuracy can be further increased with longer routes.

This work can be extended in several ways. Incorporating

the building map to the particle filter’s motion model would

improve the estimated trajectory and in principle reduce the

beacon positioning error. As a second possibility, we could

adapt the FastSLAM 2.0 method [21] to the autocalibration

problem; this method uses a proposal distribution taking into

account both the motion model and the current observations,

and compensates for a motion model with large errors com-

pared to the measurement model. However, it is possible that

at this stage, the limitations of the autocalibration process arise

not from the estimated trajectory but from the large variance

of RSS measurements, and not much improvement can be ob-

tained from these methods. For this purpose, the beacon update

estimates of the autocalibration could be processed with the

Unscented Kalman Filter (UKF) version of FastSLAM [22],

which is better suited to model the nonlinearities of the path

loss law equation than the EKF filter used in our work.

Finally, it is possible that the beacon positioning errors are

ultimately due to individual RFID tag variations (like their

transmitting power). The autocalibration algorithm could be

modified to account for this situation, estimating the beacon

individual characteristics during the autocalibration process.
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