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Abstract—Some location-aware use cases imply that a person

desires to find an object relative to his position. This is the

case of museum visits or any indoors/outdoors activity where

the objects of interest are not geo-referenced or even can move

with time. For these use cases, a user does not need an absolute

localization, but a relative information consisting of the range

to the object and the heading angle between that object and the

user’s moving direction. In this paper we study two different radio

technologies for finding an object of interest: Ultra-Wide-Band

(UWB) and Bluetooth Low Energy (BLE). Range and orientation

estimation performance is studied when using just the distance

or the Received-Signal-Strength (RSS) provided by UWB and

BLE systems, respectively. Both approaches are combined with

Pedestrian Dead-reckoning (PDR) estimation in order to analyze

the benefits that PDR information provides. For completeness we

compare the cases where only one tag is fixed to the object to

locate (the simpler and more flexible case) with the more ideal

case where several geo-referenced objects of interest, each one

with a tag, jointly cooperate to improve the relative location to

one of the objects of interest (in both cases the user carries a

mobile phone with BLE 4.0 or UWB radio). The UWB ranging

radio, not common in most smartphones, but very accurate, is

used as our reference to define the best achievable performance

goal, in order to compare with BLE RSS-based performance.

We demonstrate that the common BLE low ranging-accuracy

technology combined with smartphone-based PDR estimation is

capable, after some initial user’s walking, of finding with decent

range and heading accuracy the objects of interest in a museum-

like set-up.

Keywords—UWB, BLE, Distance Measurement, localization,

Finding objects, Estimote, Bespoon.

I. INTRODUCTION

Some location-aware use cases imply that a person desires

to find an object relative to their position. When the absolute

object’s position is known and the user’s location is also

known, using a GNSS receiver or any indoor localization

approach [1], [2], [3], the problem is straight forward. However

there are situations when the object to locate is not geo-

referenced or its position can change frequently. Additionally

we can be in a site where no location system is available or

accurate enough to guide the user to the object of interest. In

these situations, if the user is only interested in approaching

a specific object, then a relative infrastructure-less person-to-

object localization is a desired technology. Typical use cases of

these situations occur in museums, where a person is interested

in finding a particular famous painting or sculpture within a

big hall or building [4]. The museum objects of interest can

change its position from to time to time when new exhibitions

are deployed. The user also in outdoor spaces could want to

find objects of interest in parks or exposition gardens. For these

use cases, we as users do not need an absolute localization, but

a relative information that can be the range to the object and

the horizontal heading angle from our field of view perspective.

Different technologies are available for range and heading

estimation. For example vision, ultrasonic or radio frequency

radars with array antennas in order to infer the range and

heading to a particular object. In our case, we are interested in

simple, small and cheap devices already available in gadgets

such as a mobile phone. Under these requirements the spec-

trum of technologies focus on two main approaches: UWB

and BLE. With these systems we can conceive a use case

solution where a tag is attached to each object of interest and

a common smartphone is used for BLE or UWB range-related

information reading.

UWB radio technology [5], [6], can obtain a ranging

performance of 0.2 m in Line-of-Sight (LOS) cases and a

maximum ranging capability of more than 100 m. UWB

can penetrate walls in buildings and can resolve individual

multipath components due to its large bandwidth. However

in Non-Line-of-Sight (NLOS) scenarios UWB performance

deteriorates [7]. The NLOS effect causes a deterioration

of range measurements with larger dispersion and in-excess

ranges (outliers) that could be larger than one meter in typical

usage. Also, the maximum measurable range can be reduced to

less than 10-15 meters in apartment type spaces. In any case,

UWB is the most accurate ranging system available today for

indoor scenarios or spaces with multiple reflectors or obstacles.

Several commercial system exists even some of them on-chip

integrated into mobile phones.

BLE is another radio technology, that is very popular

nowadays since the iBeacon standard definition [8], [9]. These

tags broadcast at regular intervals their identification code,

as well as other parameters of interest (motion, temperature,

pressure, etc.). The range estimate is deduced from the received

signal strength (RSS) using path loss models. The point-to-

point ranging performance using BLE is low, and similar to

the achievable using WiFi or RFID beaconing, i.e. about 1-2

meters at short ranges (lower than 5 m), but range can not

be accurately estimated for larger distances or when persons

or blocking objects attenuate the radio signal. Nevertheless,

when using several BLE tags as beacons in cooperation, the

localization performance can be between 2-5 meters in larger
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areas [10]. Finding an object using point-to-point BLE ranging

is a challenge, and other sources of information, such as the

motion of the user could be beneficial.

The motion of a person carrying a mobile phone can be de-

duced by processing the inertial sensors contained (accelerom-

eters and gyroscopes). Solutions that mainly rely on dead-

reckoning methods using inertial sensors are called Pedestrian

Dead Reckoning (PDR) [11], [12], [13], and we think are of

great interest for the use cases we are interest in. In fact the

orientation of the object respect to the user location can not

be estimated in point-to-point ranging if the user motion is

unknown.

In this paper we propose to perform a novel study using two

different radio technologies for range or proximity estimation:

Ultra-Wide-Band (UWB) and Bluetooth Low Energy (BLE),

analyzing system’s performance in ranging and orientation of

the object with respect to the user’s pose. Both approaches

will be optionally combined with Pedestrian Dead-reckoning

(PDR) estimation in order to see the benefits that it can

provide. For completeness we compare the cases where only

one tag is fixed to the object to locate, and the user carries

a mobile phone with BLE 4.0 or UWB radio, and the more

ideal case where several objects of interest, each one with a

tag, jointly cooperate to improve the relative location to one

of the objects of interest. The UWB positioning system, not

common in most smartphones but very accurate, is used as our

reference to define the best achievable performance goal, in

order to compare with BLE RSS-based ranging performance.

We will demonstrate that the common BLE low ranging-

accuracy technology combined with smartphone-based PDR

estimation, and after some initial user movement, is capable

of finding the objects of interest in a museum-like set-ups with

decent range and heading accuracy.

This paper presents a description of the main features and

specifications of UWB and BLE ranging systems in section II,

the experimental ranging performance of UWB and BLE is

analyzed in section III. The join range and heading estimation

performance is analyzed in section IV. Finally, in the last

section, we give some conclusions and future work.

II. UWB AND BLE SYSTEMS

This section presents the basics of UWB and BLE tech-

nology and shows the main features of the two commercially-

available systems used in this paper: Bespoon and Estimote

(Fig. 1).

A. UWB technology and Bespoon features

Ultrawideband (UWB) technology was originally used for

communication but also has a great potential for accurate

ranging and localization [14]. This radio technology consists

of emitting very short pulses (Gaussian pulses and their

derivatives, usually called monopulses), that is why it is also

known as Impulse Radio or IR-UWB. Therefore, as its name

reveals, they use a large wide bandwidth, which has the

advantage of allowing to resolve any individual multipath

components from its direct path. The time of arrival of the

received signal can be estimated with high accuracy if the

LOS arriving path can be detected. In order to not interfere

with other equipment, they follow some FCC regulations,

a) Bespoon

b) Estimote

Fig. 1. Tags used for object finding in the museum-like use case. a) UWB tag

from the Frech company BeSpoon, b) BLE tag from the Estimote company.

which define a maximum emission power and bandwidth limit:

an absolute -10 dB bandwidth greater than 500 MHz or a

relative bandwidth greater than 20%. The IEEE 802.15.4a

(last version IEEE 802.15.4-2011) specifies two physical layers

using ultra-wideband (UWB) and chirp spread spectrum (CSS).

The UWB layer has three frequency ranges: below 1 GHz,

between 3.2 and 4.8 GHz, and between 5.9 and 10.2 GHz.

Companies like BeSpoon use the 802.15.4a impulse radio

standard specification to define its physical layer.

BeSpoon is a French start-up company which has de-

veloped a miniature IR-UWB system. They were the first

manufacturer to demonstrate that UWB technology can be

successfully integrated into a smartphone. The SpoonPhone,

consisting in a phone with the UWB radio and several UWB

tags (Fig. 1a) is a prototype that was sold for research and

evaluation purposes. This device is no longer available; Now

they changed the sale strategy and their products are sold as

general purpose modular kits (UM100). Both Spoonphone and

the new modules offer the possibility to achieve good precision

(down to 10 cm), ranging (up to 880 m in Line of Sight)

and receiver sensitivity (down to -118 dBm). They use UWB

channel 2 (3.99 GHz).

The SpoonPhone’s UWB radio can be activated as any

WiFi or Bluetooth radio in a phone, i.e. by switching “on” the

corresponding tab in the Android-based configuration menu .

The UWB antenna is also used for WiFi communication, and

it is located top-left when looking at he phone’s screen. An

SDK API is made available to programmers so as to access in

real-time to the ranging data from the phone to the different

miniature tags. The average rate of range measurements is 2.5

Hz.

B. BLE technology and Estimote Features

Bluetooth 4.0, also known as Bluetooth Smart or Bluetooth

Low Energy (BLE), is a radio comunication protocol that is
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specially designed for the internet of things. BLE is a totally

different implementation from earlier Bluetooth versions (1.0,

2.0 and 3.0), which were devoted to audio or data streaming,

and as a wireless sustitution of RS-232 comunications. BLE

main purpose is to achieve device discovery and connectivity

with low battery consumption even at the cost of lower

comunications speeds. BLE use UHF radio waves in the ISM

band from 2.4 to 2.485 GHz, and it allocates in that band

40 channels, each 2 MHz wide. The BLE protocol uses very

short duration messages for advertisement. This beaconing for

discovery can also include some payload with other relevant

information such as sensor reading (temperature, pressure,

humidity, etc.). This approach allow the implementation of a

network of BLE motes deployed to monitor and inform about

the status of the environment.

BLE has several advantages over WiFi-based beaconing.

When using a phone to register the WiFi signals by passive

scanning, the duration while the phone is waiting at the Service

Set Identifier (SSID) can be as large as 4 seconds, so scanning

rate could be below 0.25 Hz. Wifi also buffers the readings

and are provided in a single bunch with no AP differentiating

timestamps. BLE allows advertisement rates upto 10 Hz, and

the Received Signal Strength (RSS) is obtained in real time

without any buffering. Additionally BLE tags last several

months with small batteries, and the phone reading broadcast

messages consumes less energy than in a WiFi scan. Finally,

BLE tags can be easily deployed since they are small and

battery-powered.

BLE uses 3 channels for advertising in quick sequence.

These channels are nominated 37, 38 and 39 but are widely

spaced at 2402 MHz, 2426 MHz and 2480 MHz. This diversity

is employed for minimizing interference with common WiFi

deployments. A problem that could occur at BLE reception

is that only the RSS value is registered, but not the channel

on which it was received (only available for iOS 7 or above).

Depending on the final channel used for RSS registration some

important fading can occur with drops of 30 dB in very close

positions [10]. This challenge should be taken into account by

temporal filtering of the signals.

The Estimote tags used are model: “Long Range Location

Beacons” (Fig. 1b). Tags have a lifetime of 5 years, a max-

imum range of 200 m (in free space), use iBeacon and Ed-

dystone protocols, and include 5 sensors (3-axis acceleration,

Temperature, Ambient light sensor, Magnetometer sensor),

NFC, GPIO (for controlling or reading external sensors) and

1Mb EEPROM. We configured them with a transmission

power of -12 dBm, and an update rate of 5 Hz.

III. RANGING PERFORMANCE

In the following subsection we present the scenarios where

we deployed the UWB and BLE equipment, as in a museum-

like set-up, and the ranging performance that we obtained after

moving the mobile phone to different known locations:

A. Test set-ups

We tested the system in a set-up with a total of six

paintings (poster panels) along a corridor, three paintings

at two opposing walls. The corridor width is 2.5 meters.

Approximately the lateral separation is 1.35 m center to center.
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Fig. 2. Experimental localization set-up at main CAR-CSIC building

corridor: a) Details of the tag distribution, calibrations points and different user

trajectories. b) Distribution of 6 pictures along the corridor with 1 BLE and

1 UWB tag in each one. c) Detail of how two different phones: SpoonPhone

with UWB (right) and Samsung Galaxy S4 with BLE (left) are positioned

with a tripod on calibration points.

This set-up is quite small with a user’s visualization area of

about 2.5 by 5 meters (12.5 square meters). A layout and a

picture of this set-up is shown in Fig. 2. Each painting has one

Bespoon-UWB tag stick to it, and another Estimote-BLE tag

close to the UWB one.
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B. UWB ranging performance

This subsection aims to assess the performance in point-

to-point ranging, both in the UWB case (we already know it

should be quite good [15]), but specially in the BLE case where

range is estimated indirectly from noisy RSS measurements.

For the initial calibration and raw ranging tests both phones

(SpoonPhone with UWB and Samsung Galaxy S4 with BLE)

are positioned on a tripod at the same height as the tags in

paintings, keeping tags and phones on the same horizontal 2D

plane (see Fig. 2b). We define 21 points on the floor of the

corridor in a 7 by 3 m grid (black marks in Fig. 2a and b); these

points are our ground-truth positions that allow us to estimate

the true range between each tag and the mobile phones. This

measurement procedure is not ideal but guarantees an accuracy

of about 2-3 cm, enough to analyze expected ranging errors

of about ±10 cm in the best of the cases. The acquisition

of UWB range data and BLE RSS data was done in parallel

but recorded individually at each phone with an independent

logfile recording app.

Taking the UWB range information we plotted the rela-

tionship among the real and measured distances (see Fig.3a).

Even under this scenario that is mainly LOS, due the presence

of some people during the recording phase to make it more

realistic, it can be seen that the measured ranges are not

ideal and differ in ±0.4 meters from their straight LOS

path. The ranging error (measured range minus true range)

is shown in detail in Fig.3b as a histogram with the number

of occurrences for different range errors. There is a low-sigma

Gaussian distribution (±0.14 m) around zero error. Results are
in consonance with expected results for UWB [16].

C. BLE ranging performance

The same study than in last subsection but now for BLE is

presented here. In fact the experimentation was the same, but

the data in this case is conformed with RSS signals captured

with the BLE radio of a Samsung Galaxy S4 phone. The first

thing we did was to represent the decay of the RSS signals

with distance. In Fig. 4a we present the signal strength with

respect to the real distance in an histogram representation. This

data is fitted using a Simplex function minimization procedure

[17] to a classical path-loss model:

RSS = RSS0 − 10 · p · log
10

(
d

d0

)
+ v, (1)

where RSS is the received power in decibels, RSS0 is a

mean RSS value obtained at the reference distance d0 = 1m,
d is the distance between emitter and receiver, p is the path
loss exponent, and v is a Gaussian random variable with zero

mean and standard deviation σ
RSS
that accounts for the random

effect of shadowing [18].

The experimental RSS data in Fig. 4a is fitted to the path-

loss model (eq. 1) and the result presented in Fig. 4b. We found

a path loss exponent for the corridor case of p = 1.8 (lower
than 2 due to the narrowness of the corridor). The RSS0 value

at a 1 meter distance is -70 dB, and the mean RSS standard

deviation, σ
RSS
, is about 5 dB.
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Fig. 3. Real versus measured distances using the UWB Bespoon system: a)

Represented in comparison with ideal relationship (black line); b) histogram

of range errors.

The ideal distance dideal obtained by inverting the path
loss model (eq. 1) without taking into account RSS noise and

dispersion is:

d
ideal

= d0 · 10
RSS0−RSS

10·p , (2)

however this direct solution, according to the non-linearity of

the path-loss model, is biased for real noisy RSS measurements

(with dispersion σ
RSS
). The unbiased estimate of d is given by

[19]:

d = d
ideal

exp−0.5(
σ
RSS

ln 10

10p )2 . (3)

Even with bias correction, when observing the non-linearity

of the path loss model and the important dispersion of RSS

values (Fig. 4b), it is expected to have a very noisy non-

gaussian range estimation with increasing dispersion at low

RSS signals.

When we represent the real distance vs. the re-estimated

range values, computed from the RSS values and the path-

loss model, we obtain the relationship shown in Fig. 5a. The
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Fig. 4. Calibration of BLE RSS-based Estimote system: a) Histogram with

experimental RSS values (in dBm), for different real ranges; b) Experimental

data vs real distance represented by its mean and 1.6 standard deviation. A

path loss model is fitted (red line) to experimental data (path loss exponent

1.8 and RSS0 for d0=1m is -70 dBm)

horizontal quantization is due to the relatively low diversity

of total ground-truth ranges (21 points x 6 tags: 126 different

ranges). The vertical quantization, which is also exponentially

growing, is due to the fact that the captured RSS values are

integers, so according to the path loss model, one dB change in

the strong -60 dB signals represents a few centimeters change

(typical at close range), but one dB change in the range of

-90dB can be as large as 0.5 m.

For a better visualization of the range error we present

in Fig. 5b a histogram of range errors (with a gaussian blue

plot as reference). It can be seen the non-gaussian distribution

of errors and that there are range errors even larger than

10 meters (caused by very weak RSS values). Therefore a

very challenging situation is to try to estimate range from

BLE data, specially when working with isolated point-to-point

RSS data (i.e. not under the typical joint multi beacon-based

positioning).
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Fig. 5. Real versus estimated distances using the BLE RSS-based Estimote

system: a) Dispersion is large compared to ideal distance (black line); b)

Histogram of range errors, which can be more than 5 meters in many cases.

IV. RANGE AND HEADING ESTIMATION

This section explains the different methods used for relative

orientation determination between a person and an object of

interest. We analyze its performance using separate Cumulative

Distribution Functions (CDF) of range and angle.

A. Different Case Studies

We assume that each object to locate (painting, sculp-

ture,etc.) has an emitting tag stuck to it with a unique identi-

fication code. The user carries a mobile phone with BLE 4.0

or UWB radio capacity. All our use cases will consist of a

total of 6 objects (6 tags in total) and the goal is to determine

the relative location of each of the objects with respect to the

users pose. We will study 2 different configurations for finding

each object:

• Cooperative trilateration-based finding. In this case

we assume that we know the localization of all objects

(absolute position or at least the realive localization

among them), so it is possible to jointly estimate

the user’s position by trilateration and from that



2017 Int. Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

User’s Phone

BLE

UWB

Acc,Gyr
Range

RSS model

Range model

PDR
Finding
Particle
Filter
(1Tag case)

Trilateration
Particle
Filter
(6Tags case)

Tags
position
database

Absolute
Position
to Relative

Individual Finding

Trilateration -based Finding

Measurement
Models

Motion model

Range

Angle

Angle

Fig. 6. Scheme with the two fundamental finding algorithms implemented.

information deduce the range and heading to each of

the individual tags. This is the most ideal case, since

it assumes that all the cooperative objects are geo-

referenced with accuracy and their state is maintained

along time.

• Individual finding. In this case, we do not rely in

any cooperation, we just use the information available

from the tag attached to the object of interest. This is

the more versatile situation and can adapt to objects

that move with time or does not require a geo-

reference maintenance. In fact this is the use case more

challenging, in principle less reliable, and the one we

are more interested in for its novelty and applicability.

As we are also testing the influence of adding PDR infor-

mation to the estimation processes for each of the two different

configurations: “Cooperative trilateration-based finding” and

“Individual finding”, then we finally have 4 case studies. For

convenience we will denominate them as: 6Tags, 6Tags+PDR,

1Tag, 1Tag+PDR. Where the “6Tags” label is used for the

“Trilateration-based finding” and the “1Tag” label is used

for “Individual finding”. Since we also use two different

technologies: UWB and BLE, then will will finally study a

total of 8 configurations, as we will present in next subsections.

B. Range and Heading Algorithms

There are two fundamental algorithms developed for the

two main configurations “Trilateration-based finding” and “In-

dividual finding” (or 6Tags and 1Tag approaches, respectively).

In both cases we implemented the estimation using a particle

filter and a location engine. See Fig. 6 for a block diagram of

these algorithms.

The 6Tags case, is a typical trilateration algorithm using a

Bayesian estimation with a measurement model that depends

on the technology used. If UWB distance measurements are

processed then a combined LOS+NLOS model is used as in

[16]. If RSS measurements are received from the BLE system,

then a generic path loss model is used with the parameters

deduced in last section. The particle filter uses 4 states, 3

for 3D position and one for absolute heading of the person

(his phone in fact). When the PDR information is used the

the movement model is improved by displacing the particles

the amount measured with a stride length estimator, and the
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Fig. 7. Example of relative localization using a particle filter for the

“1Tag+PDR” (or “Individual finding” assisted by PDR) in the most chal-

lenging case of BLE RSS-based estimation. The Radar-like view shows the

particles in blue, the ground-truth in yellow, the finding results: distance and

orientation.

heading change observed from the PDR attitude-and-heading-

reference-system (AHRS).

The 1Tag case, is a special relative localization approach

that is implemented using a particle filter and a Bayesian

approach. In this case the particle filter used 3 states, only

the 3D position of the object respect to the phone’s main

axis. The measurement model is the same that in the previous

case but contributes in a less informative way to the position

determination since only two actors are involve in the process,

the phone and the object’s tag. So Particle weighting is done by

circumferences centered always on the phone’s place (a ring-

like shape distribution). This estimation process is only able

to deduce the range to the object but never the orientation to

that object. The only way to estimate the object’s orientation

is by adding PDR information. In this case, the particles can

be moved backwards when a user step is detected, and can be

rotated respect to the phone position when PDR detect a turn.

After a succession of several RSS (or ranges) measurements

and several steps detected with some turns, it is when the

object’s orientation with respect to the user can be deduced.

This is the more challenging case, when using BLE instead of

UWB, since measurement modes are very inaccurate and PDR

detection at a phone is not so reliable as foot-mounted PDR.

A representative vision of the particles distribution, object’s

estimation and ground-truth data, for the 1Tag+PDR or “Indi-

vidual finding” case, is shown in Fig. 7. After some walking

and one turn, the initial ring-like particle distribution converges

to a more clustered distribution, and it is then possible to

estimate the object’s location with respect to the phones’s pose.

In this case the object is behind the user at a distance of 10

meters.

Different experiments, with different trajectories around the

paintings area were performed. For these cases, and in order
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to ease the PDR estimation, zig-zag and “s”-like trajectories

are performed. Any trajectory with 90 or 180 degrees turn are

good for achieving angular information when PDR is active.

Walking straight all the time does not give information for the

particles filter cloud to converge. So our trajectories contain

turns to make the estimation feasible.

The ground-truth position or Range/heading ground-truth

is obtained in our case from PDR estimations when we give

the known initial position and the correct orientation. This is a

very practical way to obtain the ground-truth, not too precise,

since is subject to a discrepancy between the foot motion

and the actual phone movement, but enough to observe the

performance limitations and achievements from the cases we

want to explore.

C. UWB Range and Heading Performance

Here we will show the performance of the more ideal

UWB case (Bespoon) for the 4 configurations described above:

6Tags, 6Tags+PDR, 1Tag, 1Tag+PDR, all preceded with label

“UWB” since we are in that case. Since two independent

estimations are required for relative finding: range and heading,

then the results are presented in two separate CDF, one for

range, and another for angle. In Fig. 8 we present these results.

From Fig. 8a we can see that the range estimation is better

for the “Trilateration-based finding” (6Tags cases) than for

the “Individual finding” (1 Tag cases). This is logical since

more information is used. The contribution of PDR information

is irrelevant and no improvement is achieved. This is again

consequence of the high quality of UWB ranging process, and

PDR does not add any value to UWB system.

From Fig. 8b we can see that the angular estimation is not

so ideal even for the 6Tags case; in this case the contribution of

PDR helps somehow for a better orientation determination. On

the other side we see that the 1Tag case is unable, as expected,

to determine any kind of orientation, however using 1Tag+PDR

is possible to obtain a decent orientation estimation, after

some walking. In fact in our experiments 40% of the time

the orientation was lost (particles in ring-like shape) but after

some walking the orientation was deduced with less than 30

degrees error in 80% of the cases. The time were the estimation

was lost is included in the CDF.

D. BLE Range and Heading Performance

This subsection will analyze the same situations as the last

one, but in this case using BLE technology (Estimote tags). In

Fig. 9 we present these results.

From Fig. 9a we see a good performance in range estima-

tion when using 6Tags, and even better range estimation with

PDR. The results in range for the BLE:6Tags+PDR are almost

as good as for the UWB case, which is a good achievement.

When using only 1Tag the performance in range estimation is

not very accurate (about 3 meters error in 60% of the cases)

and no significant improvement is obtained from PDR in these

cases (4 m error in 90% of the case for the PDR case). This

is due to the poor measurement models of BLE technology

when no RSS redundancy exists.

From Fig. 9b we deduce that Orientation is more difficult

to deduce, even for the 6Tags case, however when adding
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Fig. 8. Cumulative Distribution Functions for the UWB-Bespoon technology:

a) Distance CDF; b) Angular CDF.

PDR information angular estimation improves significantly

(less than 30 degrees error in 80% of the cases). As expected

the orientation estimation from the challenging 1Tag case

with BLE data is problematic. However after a long period

where the particles have not clusterized yet (70% of the

experimentation time), the angular estimation is good with

error below 30% in 80% of the cases, similar to the UWB

case. This result demonstrate that using Estimote RSS based

technology combined with PDR, even for objects tagged with

no geo-referentiation, it is possible to find the object of interest

after walking a while around the undiscovered object.

V. CONCLUSIONS

We have presented an experimental evaluation of different

approaches for finding an object of interest respect to the pose

of a user’s phone. The range and orientation is computed from

two approaches: 1) a cooperative trilateration method where

several geo-referenced tags jointly cooperate providing tag-to-

phone ranges, and 2) a novel an much more challenging use

case where only one unreferenced individual tag is transmitting

range information. These two approaches are complemented

with PDR information to analyze its contribution and benefits.

The case of two different technologies are analysed: UWB



2017 Int. Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Range Error (m)

P
er

ce
nt

ag
e 

w
ith

 e
rr

or
 lo

w
er

 th
an

 a
bs

ci
sa

Cumulative Distribution Function (CDF) 

 

 

BLE:6Tags
BLE:6Tags+PDR
BLE:1Tag
BLE:1Tag+PDR

a)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Angular Error (degrees)

P
er

ce
nt

ag
e 

w
ith

 e
rr

or
 lo

w
er

 th
an

 a
bs

ci
sa

Cumulative Distribution Function (CDF) 

 

 

BLE:6Tags
BLE:6Tags+PDR
BLE:1Tag
BLE:1Tag+PDR

b)

Fig. 9. Cumulative Distribution Functions for the BLE-Estimote technology:

a) Distance CDF; b) Angular CDF.

and BLE, using commercially available devices (Bespoon and

Estimote, respectively). After this analysis, we demonstrate

that the common BLE low ranging-accuracy technology com-

bined with smartphone-based PDR estimation is capable, after

some initial user’s walking, of finding with decent range and

heading accuracy the objects of interest in a museum-like set-

up, but also valid for outdoors applications for finding objects

of interest.

Future research will include the experimentation in larger

spaces, in more realistic scenarios like museums and botanic

parks. The convergence time versus the traveled trajectory will

be studied. The detection rate, or confusion matrices when

trying to use this estimation to receive augmented information

from a particular object and not from the ones close to it, will

be another future work to implement. These future studies can

open the potential to other fine-grained finding in museums or

spaces with a higher density of objects that we could want to

discern.
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