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Abstract—Nowadays smartphones have impressive sensing and
computation capabilities, allowing the registration and processing
of multiple sources of information. This power enables the
creation of useful applications, such as seamless locationboth
outdoors and indoors. Research teams pay less interest in
standardizing the acquisition and processing of sensor data than
to research and innovation tasks, so each group develops itsown
private software tools to collect data. We want to contribute
by creating a framework that allows a more coherent data-
stream registration and algorithm performance comparison. In
this paper we present an open-source framework to make possible
multi-sensor registration, which includesGetSensorData , our
logging Android application. In order to ease the creation and
sharing of experiments among different researchers aroundthe
world, the framework also includes the data format de�nition, the
data parsers and the procedures to calibrate maps and to de�ne
the ground-truth trajectory for subsequent position algorithm
performance comparison. Finally, we review applications of these
tools in the IPIN competition as well as in teaching activities.

I. I NTRODUCTION

Seamless localization is still an open problem, especiallyfor
personal indoor navigation, where satellite solutions (GNSS)
does not work due to signal occlusion [1], [2]. Nowadays,
smartphones contain enough sensing and processing power
to register in real-time multiple sources of information. This
power enables the creation of useful applications for seamless
user geolocation both outdoors and indoors. Unfortunately,
the heterogeneity of data formats and protocols used by each
research group makes dif�cult to create standard data sets for
straight-forward algorithm performance comparison [3], [4].

The majority of research works about indoor positioning
do not provide the technical details of the applications used
to gather data. This makes dif�cult to reproduce the results
since some parameters, such as the sampling frequency of
�ngerprints, are not provided. However, this trend is changing
and some researchers are providing data sets and supporting
materials with their research papers. The Airplace Indoor
Positioning Platform provides a logger application that saves
the Wi-Fi �ngerprints in a log �le in the smartphone [5].
Anyplace is a Crowdsourced Indoor Information Service that
provides tools to register and manage the Wi-Fi �ngeprints,
and to create a new indoor venue with image �oor maps.

This paper introduces an open-source framework, which
makes possible a centralized data registration using smart-
phones. It includes a smartphone application to register data
from multiple sensors. The idea is to ease the creation and

sharing of experiments among different researchers, making
possible the use of a common data format, creating a de-facto
standard format. It provides the data parsers able to interpret
and visualize each speci�c data type. The framework also has
a graphical user interface (GUI) to geo-reference and calibrate
indoor maps. With this GUI tool, it is possible to de�ne
ground-truth (GT) trajectories as a sequence of reference
points on the map. The subsequent performance comparison
of positioning algorithms requires a good ground-truth [6].

In section, II, we present the GetSensorData Android app,
describing the different internal and external sensors that can
be registered, the format for each sensor type, and the data
parsers. In section III, we present the mapping user interface
to geo-calibrate indoor maps and to de�ne ground-truth paths.
Finally, section IV shows the usage of these tools.

II. SMARTPHONE-BASED MULTISENSOR REGISTRATION

A. The GetSensorData App

We have designed an Android-based App that is able to
show in the main screen the different sensors available in
a smartphone. The sensors detected in the phone's hardware
are marked in green color, whereas the common sensors not
detected in the phone's hardware are marked in red color
(see left screenshot in Fig. 1). In this way, it is very easy
to visualize the richness of sensors available in the phone.

Three different buttons are available in the top of the
main screen. The left button (“Show Sensor Features”) opens
a parameter description for each sensor. Information such
as manufacturer, model version, resolution, maximum range,
power consumption or sampling rate is shown (see gray areas
in the right screenshot of Fig. 1).

The button in the middle (“Show Real-time Data”), opens
the real-time display for each of the available sensors (see
white areas in Fig. 1 right). The sampling frequency is
estimated by the application.

The sampling frequency depends on the sensor's hardware,
but it can be con�gured to different values using the con�gu-
ration screen (Fig. 2 left). There are two ways to con�gure the
sampling rate. First, by choosing between 4 different modes
available at the Android sensor API (FASTEST: that gets
sensor data as fast as possible, GAME: rate suitable for games,
NORMAL: default rate suitable for screen orientation changes,
and USERINT: rate suitable for the user interface). See options
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Fig. 1. Main screen of GetSensorData Android app. Left: initial mode
showing all potential sensors (green: available; red: not available or not
connected). Right: visualization of real-time sensor dataand static sensor
features (this screenshot shows triaxial accelerometers and gyroscopes); other
sensors can be visualized by scrolling down the view.

at Fig. 2 right. They are only a hint to the system, but do not
generate any systematic way to �x the sample rate.

Another way to set the desired sampling frequency is by
directly typing it. This is possible if the parameter “Min-
Delay”, in the sensor description, is not equal to zero. If a
sensor returns a “MinDelay” of zero, it means that is not a
streaming sensor because it reports data only when there is
a change in the parameters it is sensing. Streaming sensors
(“MinDelay” non zero) are preferred since they sense data at
regular intervals. A value of “MinDelay” such as 10,000 (as
appears in the accelerometer description of Fig. 1 right) should
mean that the minimum sampling interval is10 000µs (i.e. a
maximum 100 Hz sampling rate). A value of 5,000 implies
a maximum sampling rate of200 Hz. The desired frequency
within the valid range, can be con�gured in the con�guration
window (Fig. 2 left), but it is also a hint to the system; there
is no guarantee of correctly setting it up.

The button at the right (“Start Saving a LogFile”), in
Fig. 2, triggers the recording of all sensing data in a log�le
for later off-line use. This log�le is stored in folder ”Log-
Files GetSensorData” with a unique name based on the date
and time at the end of the recording. The log�le will be created
containing all the available signals captured in real-time, which
could include: WiFi and Bluetooth received signal strength
(RSS), inertial data, GNSS positions, etc. Additionally, the
utility of the software can be augmented by connecting exter-
nal sensors that stream data into the smartphone. Currently,
this extension is limited to those sensors used in our CAR
center for positioning research, such as RFID readers and
inertial measurement units. The number of external sensors,
could be increased by collaborative programming.

Fig. 2. Con�guration window. Left: main options for update frequency,
and for enabling BLE 4.0 operation mode to detect iBeacons. Right: typical
approximate acquisition update rates.

B. Internal sensor sources

The internal sensors are those de�ned in the Android
developer sensor overview guide1. There are two types of
sensors in Android: hardware and software-based sensors.
Hardware-based sensors are physical components built intothe
phone, and data is obtained directly from them. On the other
hand, software-based sensors are algorithms that, using some
readings from one or several hardware-sensors, emulate a new
sensor type (for example: gravity, step counter, orientation).

The app mainly registers hardware-based sensor such as
WiFi RSS, Bluetooth RSS, inertial data (accelerometer and
gyroscope), magnetic �eld, atmospheric pressure, which are
directly usable for positioning, and also signals of opportunity,
such as, temperature, humidity, proximity and light intensity,
that could be used to give clues about the user's location (e.g.
the light-matching approach [7], [8]). It also registers software-
based sensor such as phone's orientation, as well as sound
intensity that is estimated from the microphone readings.

Additionally, we include geo-spatial coordinate estimations,
derived form the network (Cell telephony or WiFi �ngerprint-
ing) or from GNSS integration. The latter is available when
precise positioning is activated in the phone and visibility to
satellites is good. Fig. 3 shows a screenshot during geo-spatial
positioning using NETWORK (left) and GNSS (right). Note
that network positioning only performs horizontal 2D location,
and does not estimate the altitude. When there are enough
satellites “in view” with good quality, then the estimation
switches to GNSS positioning mode, and satellites used in
the trilateration are marked as “in use”.

At this state the registration of the RAW measurements from
multi-contellation GNSS systems, which a trending topic [9],
is not implemented yet, but hopefully soon.

1https://developer.android.com/guide/topics/sensors/sensorsoverview#java
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Fig. 3. Screenshots with the location service. Left: Network location mode
using WiFi or cell phone trilateration. Right: GNSS localization with higher
accuracy and height estimation.

C. Log�le data format

The log�le is a “txt” �le containing multiple rows. The
continuous stream of data generated in the phone is stored
in the log�le in sequence, row by row as they are received.
Each row begins with a unique identi�cation header, composed
by four capital letters followed by a semicolon (e.g. `WIFI',
`ACCE', `MAGN', `BLE4', `GNSS', etc.). This header deter-
mines the kind of sensor. The subsequent data �elds after the
header, separated by semicolons (“;”), contain different sensor
readings of interest, including timestamps. In Fig. 4 an extract
of a real log �le is shown as example.

Fig. 4. Log�le sample of a sequential sensor data registration, as created with
the GetSensorData app.

Next, we will describe details on each sensor type, the row
multi-�eld registration format, and real data examples.

The tri-axial accelerometer (ACCE) and gyroscope (GYRO)
rows contain two time stamps followed by the X, Y, and Z
components. The inertial data is registered this way:
� ACCE: Phone's tri-axial acceleration inm s� 2:

� Format: “ACCE; AppTimestamp(s); SensorTimestamp(s);
Acc X(m s� 2); Acc Y(m s� 2); Acc Z(m s� 2); Accuracy(int )”

� Example: “ACCE;0:034;8902:708;� 1:80044;6:41646;7:17303;3”

� GYRO: Phone's turn rate inrad s� 1:
� Format: “GYRO;AppTimestamp(s); SensorTimestamp(s);

Gyr X(rad s� 1); Gyr Y(rad s� 1); Gyr Z(rad s� 1);
Accuracy(int )”

� Example: “GYRO;0:032;8902:705;� 0:22846;� 0:21930;
� 0:05498;3”

The �rst timestamp (“AppTimestamp”) is set by the mobile
App when data is read at the listener (interrupt processing
routine). This timestamp may not be totally representative
of when data was actually captured by the sensor, but it
de�nes a common time reference for all sensors. On the other
hand, an additional not-always-available time stamp, called
“SensorTimestamp” is set by the sensor itself and can be
more representative of the actual time between consecutive
samples. The sampling interval is in fact the difference
between two consecutive samples SensorTimestamp(k) and
SensorTimestamp(k � 1).

Note that the sampling rate of each sensor type can be
different from log�le to log�le, specially when using different
phones, since it depends on the embedded sensor chipset in
a particular phone. Typical sampling frequency values for the
inertial data is about50 to 200 Hz. Pressure, Sound, Light
sensors have a much lower update rate (< 10 Hz). WiFi scans
are available approximately every4 to 6 s(� 0:16 to 0:25 Hz).

The triaxial magnetometer (MAGN), with sampling rates
similar to those of accelerometers, are recorded in this format:
� MAGN: tri-axial magnetic �eld in µT:

� Format: “MAGN; AppTimestamp(s); SensorTimestamp(s);
Mag X(µT ); Mag Y(µT ); Mag Z(µT); Accuracy(int )”

� Example: “MAGN; 0:035;8902:708;� 20:7000;� 34:0200;
� 19:2000;3”

An Android software sensor, which estimates the orientation
of the phone, is created from the inertial and magnetometer
data. Information is coded in rows starting with AHRS
header (AHRS stands for Attitude and Heading Reference
System). The rotation conventions are described in the Android
developer guides, seeSensor Coordinate Systemsection in the
sensors overview guide2 and Use the rotation vector sensor
section in the sensors motion guide3:
� AHRS: the mobile phone 3D orientation in terms of
pitch, roll and yaw, and also as a rotation vector (a 3-value
compressed form of a quaternion):

� Format: “AHRS; AppTS(s); SensorTS(s); PitchX(� ); RollY( � );
YawZ(� ); RotVecX(); RotVecY(); RotVecZ(); Accuracy(int )”

� Example: “AHRS;0:033;8902:705;41:6550;11:7495;
� 124:0558;0:25038;� 0:26750;� 0:80406;� 2”

2https://developer.android.com/guide/topics/sensors/sensorsoverview
3https://developer.android.com/guide/topics/sensors/sensorsmotion
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The WiFi RSS data, as well as BLE RSS, are important
sources of information for absolute positioning indoors. They
can be used to implement �ngerprinting or trilateration local-
ization methods. We register WiFi RSS information this way:
� WIFI: the RSS (indBm) received from a particular AP

� Format: “WIFI; AppTimestamp(s); SensorTimeStamp(s);
Name SSID(text ); MAC BSSID(text ); Frequency(Hz);
RSS(dBm)”

� Example: “WIFI; 16:62;22:52;eduroam;00:0b:86:27:3e:d0;
2427;� 75”

In order to register BLE4 beacons, we must set the checkbox
in the App's con�guration window (see Fig. 2 left) and restart
the app (BLE4 line should appear now green, as in Fig. 1 left).

Two different types of beacons can be registered: iBeacon
and Eddystone (the dominant protocols from Apple and
Google, respectively). As both protocols have different �elds
and identi�cation codes, we use two different line formats,but
with common �elds. The format for both BLE4 lines are:
� BLE4: RSS (dBm) from iBeacons tags

� Format: “BLE4; AppTimestamp(s); `iBeacon'; MAC(text );
RSSI(dBm); TxPower(dBm); MajorID(int )); MinorID(int );
UUID(text )”

� Example: “BLE4;0:156;iBeacon;FE:5E:61:D4:F2:EC;� 69;� 76;
2016;19;b9407f30-f5f8-466e-aff9-25556b57fe6d”

� BLE4: RSS (dBm) from Eddystone tags

� Format: “BLE4; AppTimestamp(s); `Eddystone'; MAC(text );
RSSI(dBm); instanceID(int ); OptionalTelemetry[voltage(V);
temperature(� C); uptime(ms); count(int )]”

� Example: “BLE4;0:154;Eddystone;E5:A3:7B:5D:3E:9A;� 98;
201600000010;5954;17:0;20240;13591778”

Pressure and light data, can give some clues about potential
�oor or room changes. They are registered with the PRES and
LIGH headers with following formats:
� PRES: the atmospheric pressure inmbar

� Format: “PRES; AppTimestamp(s); SensorTimestamp(s);
Pres(mbar); Accuracy(int )”

� Example: “PRES;0.038;8902.726;956.4289;0”

� LIGH: for light intensity in lx

� Format: “LIGH; AppTimestamp(s); SensorTimestamp(s);
Light(lx ); Accuracy(int )”

� Example: “LIGH;0.032;8902.693;292.0;0”

The GNSS position information is recorded with latitude
and longitude, height, bearing, speed and the number of
satellites in view and in use.
� GNSS: On-chip fused GNSS estimation of location

� Format: “GNSS; AppTimestamp(s); Lat(� ); Lon(� );
Altitude(m); Bearing(� ); Accuracy(m)); Speed(m s� 1);
UTCTime(ms); SatInView(int ); SatInUse(int )”

� Example: “GNSS;0.611;40.313524;-3.483137;600.865;0.000;
4.0;0.0;1358782729999;17;15”

Additional internal sensors such as ambient temperature,
sound, proximity to the phone and relative humidity are easy
to interpret from the header's information at the top of each
log�le.

D. External sensor sources and format

The GetSensorData app can read data from some external
sensors. Three different inertial sensor units, showed in Fig. 5,
can be read: MTi and Mti-G from Xsens4, LPMS-B from
Life Performance Research5, and Osmium MIMU22BT from
InertialElements6.

Fig. 5. Inertial sensors that can be connected to the GetSensorData app. From
left to right: Xsens MTi, Osmium MIMU22BT and LMPS-B

The MTi and MTi-G Xsens sensors must be connected
to the phone through a USB On-The-Go (OTG) cable, so
the smartphone has to support USB OTG protocols. The
GetSensorData app automatically detects the Xsens device and
sets a default con�guration with a100 Hz sampling rate.

The other two IMUs LPMS and MIMU can be connected
by Bluetooth 3.0 wireless protocol. You must pair them prior
to open the GetSensorData app. After pairing, when the app
runs, it iniciates a hidden scan process in order to establish
communication with the sensors. When communication starts,
the app marks that external sensor in green color, and the
system is ready to visualize data and to register it into a log�le.
The Osmium MIMU also can be connected by USB cable.

The Xsens Mti device is the sensor that we have used the
most in our experimentation. It is a ruggedized small MEMS
inertial measurement unit with an embedded processor capable
of calculating in real time the attitude (roll, pitch and yaw;
or in quaternion format), as well as outputting calibrated 3D
acceleration, rate of turn (gyro) and (earth) magnetic �elddata.
We use string `IMUX' as line header.
� IMUX: XSens inertial data

� Format: “IMUX; AppTimestamp(s); SensorTimestamp(s);
Counter(int ); Acc X(m s� 2); Acc Y(m s� 2); Acc Z(m s� 2);
Gyr X(rad s� 1); Gyr Y(rad s� 1); Gyr Z(rad s� 1);
Mag X(µT ); Mag Y(µT); Mag Z(µT ); Roll(� ); Pitch(� );
Yaw(� ); 4 x Quat(oat ); Pressure(mbar); Temp(� C)”

� Example: “IMUX; 0:185;28:58;2874;0:0311;� 0:0217;9:8104;
0:0166;0:025;0:0162;0:3943;0:2547;� 0:6813;0:0000;0:0000;
0:0000;0:9592;0:0000;0:00004;� 0:2824; 0:000;24:25”

The IMUX data includes a counter to check if any sample of
data is lost. An atmospheric pressure �eld is �lled when MTi-
G sensor is connected. Registering the internal temperature of
the sensor is valuable to check if it is stable. The temperature
stabilizes and drift minimizes after operating 15 minutes.

4https://www.xsens.com
5https://lp-research.com/lpms-b/
6https://inertialelements.com
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On the other hand, the LPMS inertial sensor has similar
functionality to Xsens, but is smaller and has bluetooth
wireless connectivity, as main advantages. The chosen sensor
header is `IMUL'. The recorded data �elds are the same as in
the Xsens (IMUX) case.

The new compatible IMU is Osmium MIMU-BT (header
`IMUI'). This model uses Bluetooth 3.0 protocol (as LPMS).
This inertial sensor has the advantage of including an arrayof
four 9-axis IMUs, so the inertial signals, after an embedded
fusion, are less noisy and consequently the bias and drift
can be improved. The device also includes a step detection
and PDR algorithm for accurate foot-mounted estimation.
Multiple output con�guration are possible, including raw
inertial signals, but we opted to output the delta displacement
at each detected step (displacements in X, Y, Z and heading
with respect to the last foot position). This information is
enough to reconstruct the trajectory of a walking person.
The estimate covariance matrix (4x4) is provided in compact
format (10 numbers) as it is symmetrical.
� IMUI: Osmium MIMU-BT inertial and PDR sensor data

� Format: “IMUI; AppTimestamp(s); Packetcount(int );
Step Counter(int ); delta X(m); delta Y(m); delta Z(m);
delta theta(� ); 10 x Compact Covariance (oat )”

� Example: “IMUI; 22:706;22;18;0:57450;� 0:55372;0:05466;
1:90623;0:00038;0:00000;� 0:00000;� 0:00000;0:00038;
� 0:00000;� 0:00000;0:00037;� 0:00000;0:00000”

The “Packetcount” �eld is an internal MIMU counter with
the number of data packets sent since switch-on. This number
should increase at the same rate as the “StepCounter” �eld
because each data packet corresponds to a new generated step
data. If “StepCounter” increments less than “Packetcount”
it means that information is lost during Bluetooth communi-
cation (not so uncommon in our tests).

At this stage, we are still trying to �nd the best con�guration
to make this communication as robust as possible, even by
testing other more recent model: Osmium MIMU22BLPX (in
this case using Bluetooth v4.1 and USB 2.0 data interfaces).

Apart from inertial sensors, the GetSensorData app is able
to connect with RFID readers, in particular model M220
from RFCode7. This model is the one used in many of
our past research works about RFID indoor positioning and
tomography. Fig. 6 shows a M220 RFID reader and some
external inertial sensors connected to a smartphone running
the GetSensorData app. Note that correct communication is
marked in green color in the App's main screen.

It is important to mention that we can connect unlimited
number of RFID readers to the app, since on start-up the app
tries to detect and connect to all compatible paired Bluetooth
devices. In the log�le (RFID lines), each reader is identi�ed
by its unique Reader Number.
� RFID: Portable wireless M220 RFID reader from RFCode

� Format: “RFID; AppTimestamp(s); ReaderNumber(int );
TagID(int ); RSS A(dBm); RSS B(dBm)”

� Example: “RFID;0.187;30;67955;64;55”

7https://www.rfcode.com/

Fig. 6. Smartphone (Samsung Galaxy S4), running the GetSensorData
Android app, and augmented by connecting some external sensors (Xsens
MTi IMU, Osmium MIMU22BT and M220 RFCode RFID reader).

Using the Received Signal strength (RSS) between the
emiting `TagID' and the received `ReaderNumber' trilateration
or �ngerprinting location solutions can be implemented. Asthe
reader has two antennas (A and B) a redundant, but useful,
RSS information is obtained, which can be used to make
estimations more robust, for example by selecting the strongest
RSS value (less affected by NLOS).

E. Extra functionalities: Ground-truth marks and Parsing tool

The app has a button (down on the main screen, called
“Mark First Position”) that is intended to insert ground-truth
(GT) reference lines (header `POSI'). This is useful when
you latter want to relate the log�le signals with some key
events (usually ground-truth positions), but also to mark the
occurrence of other events such as activities (sit down, stop
moving, etc.). The POSI lines have the following format:
� POSI Reference for ground-truth position

� Format: “POSI; Timestamp(s); Counter(int ); Lat(� );
Longitude(� ); �oor ID(int ); Building ID(int )”

� Example: “POSI;0:033;4;;;;

The `POSI' line initially is created with no ground-truth
(GT) data, as no GT is apriori known, and the app does
not ask you to enter that data during the recording process.
The GT information can be inserted a posteriori using a geo-
referenced mapping tool running in Matlab that is presented
in next section (sec. III).

The parsing of the all internal and external sensor readings
in the log�les can be done easily using a Matlab function,
called ReadLogFile21.m8. This function reads line-by-line all
sensor streams, and load them on Matlab numerical matrices,
which are saved as *.mat �les for a more e�cient later use.
The parser function also open several windows to visualize
data graphically. In Fig. 7 a few data examples are shown for
turn rate, BLE RSS and GNSS position estimations, while a
person is moving and rotating the phone.

8Avaialble at http://car.upm-csic.es/lopsi
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a) Gyroscope

b) Bluetooth

c) GNSS

Fig. 7. Some graphical outputs of the parser `ReadLogFile21.m'

III. I NTERFACE FOR MAP GEO CALIBRATION ANDGT
DEFINITION

Common available �oor maps for buildings are typically
based on engineering CAD formats. These maps are not
usually geo-referenced, so it is not easy to use then in
navigation applications where a mobile device has information
about his location using a globally referenced coordinate frame
such as WGS84 (the one used by GPS). Having in mind the
application goals we already de�ned (competitions, teaching or
collaborative works among researchers), we considered useful
to create a graphical tool in order to easily and systematically
calibrate maps, create ground-truth points and to test the
performance of different positioning algorithms.

In the next subsections we present this graphical tool called
`GUI maps.m' that has been created using Matlab code. This
tool can be used to: 1) geo-reference indoor maps of a building
(several bitmaps for each different �oor); 2) add sequences
of points of ground-truth marks; and 3) to manipulate the
sensorial LogFiles created with the GetSensorData Android
app in order to �ll, or empty, the ground-truth `POSI' marks
inside those Log�les.

A. User interface

The `GUI maps.m' tool has a simple screen interface as can
be seen in Fig. 8, with six different actuation areas (marked
in red numbers):

� Area 1: Background georeferenced Google Maps with
longitude and latitude information.

� Area 2: Control to select the desired type of view to
appear in area 1: terrestrial or satellite.

� Area 3: Used to calibrate several CAD indoor bitmaps
representing �oormaps in a building.

� Area 4: Creation of ground-truth paths (list of geo-points)
with indication of the Latitude, Longitude, FloorID and
BuildingID.

� Area 5: Used to manipulate the empty `POSI' marks in
LogFiles created with the GetSensorData Android app.

� Area 6: Contains controls for zooming in and out,
dragging, and measuring distances

B. Map Calibration

For map calibration, we need to have the bitmap �les with
enough resolution to capture the indoor details. In current
version only jpg images are supported.

The tool does not yet include the initial creation of the cali-
bration �le, so it is required to manually create an approximate
calibration �le (this process is required to be done only once).
In Fig. 9 a calibration �le example is shown containing 4 �oors
(IDs: 3, 2, 1 and 0) and one building (ID: 1).

The calibration �le is a text �le with extension `.cal'. Each
�oor in the calibration �le must have seven rows:

1) the �lename of the bitmap
2) the �oor number or ID (e.g. -2, 0, 3)
3) the Building number or ID (e.g. 10, 20, 30)
4) Latitude (in degrees) of image center
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Fig. 8. Main Matlab GUI interface with the different controls to calibrate
maps, de�ne GT trajectories, and to update log�les with POSImarks.

Fig. 9. Sample of a map calibration �le (text �le with `cal' extension)

5) Longitude (in degrees) of image center
6) Clockwise �oormap image rotation (in degrees) for

correct alignment with background (geometric north)
7) Scale of �oormap image pixels (meters/pixel)

A calibration �le has always 7 lines, and a variable number
of columns; as many columns as the number of �oors in the
building (in the example in Fig. 9 there are 4 columns for each
of the 4 �oors).

Once the approximate calibration �le is created in a text
editor, we can open it and re�ne the �le using the scaling,
rotation and displacement controls in area 3 (Fig. 10). The
calibration is achieved by �tting as best as possible the bitmap
over the Google maps in satellite or terrestrial view. In order to
ease the overlapping of both images (indoor with respect the
Google maps) we can change the transparency of the bitmap.

Fig. 10. Calibration process using the map manipulation controls

Fig. 11. De�nition of a set of ground-truth geo-referenced points

In order to reduce the uncertainty in the calibration it is
recommended to check the calibration of the scale of the map
using a distance meter device (laser meter or a long metric
tape). We can physically measure the length of some corridors
or halls in the real space and then compare that real distance
with the distance estimated with the graphical distance tool.

To re�ne the translation and rotation of the �oor bitmap,
it is recommended to measure the real distance (laser meter)
between some marks in the outdoor terrain with respect to
some outer walls in the building. With this low-resource
method we believe it is possible to calibrate the maps with
an accuracy better than 0.5 meters. If bitmap already contains
geo-referenced points (at least 3) the calibration is straight-
forward and more accurate.

C. Ground-truth point creation

Once the map is calibrated, now it is possible to create the
list of ground-truth (GT) or geo-referenced points. The control
buttons in area 4, as shown in Fig. 11, should be used.

These points are stored in a text �le in a trajectory format
(with extension `*.tra'). These trajectories GT points canre-
opened to interactively modify their positions, or manipulated
by inserting or deleting some of them.

D. Ground-truth management in POSI marks

The tools in area 5 are used to integrate the GT points
created before (a ”*.tra” �le) with the sensor logFile cor-
responding to a sensor data registration experiment. When
opening the logFile, it starts parsing the �le. After completion,
the views in area 5 will show the number of lines in the
log �les and the number of POSI marks found, distinguishing
between empty and �lled ones (i.e. those with a correct GT).

By pressing the `Assign Trajectory as Ground-Truth POSI
to LogFile' button the integration of both sources of infor-
mation is done. After saving, a new LogFile ending with
` POSI assigned.txt' is created, which has the POSI lines with
the correct GT; e.g., `POSI;0:033;4;40:31347;� 3:48315;0;10'.
It is also possible to completely delete POSI marks from
logFiles (those ended in P̀OSI deleted.txt').
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IV. U SE OF TOOLS IN LOCALIZATION ACTIVITIES

The previous sections presented tools (GetSensorData, the
parser, and the mapping tool with geo-GT management), that
have several uses in the indoor positioning community. We
encourage people to use these free tools (available in our
website8) to make their own mobile phone experiments, and
then to share them with the indoor community, as a way to cre-
ate a comprehensive repository of experimentation databases.
Also the source code is available at a Git repository9, so that
the community can contribute to improve it.

Apart from the use for smartphone data registration in
experiments for research, other uses are possible. Some of
these will be presented next.

A. Indoor localization competitions

During the last editions of the Indoor Positioning and Indoor
Navigation (IPIN) Conference, years 2016, 2017 and 2018, we
have used versions of these tools in the localization competi-
tion: Track 3 - `Smartphone based Positioning (off-site)'.The
details of the training and evaluation log�les are available in
the corresponding IPIN conference10 and EvAAL11 websites.
The challenges, competitor method details, and results have
been reported in scienti�c publications [4], [10].

The provided log�les and maps have become familiar to
several competitors that participated in past editions [11], [12],
[13]. The format is not a standard but it is a reasonably
way to share experiments between researchers. So far, several
different buildings have already been tested (four research
buildings in Spain and one shopping mall in France) [14].

B. Teaching PDR algorithms

The tools have also been used in teaching activities. For
example, the PDR tutorial presented at IPIN 2017 edition in
Japan, had a practical session where attendees were requested
to use their smartphone with the GetSensorData app, in order
to make experiments. In this way, they could put hands
on Matlab, or Octave, environment to better learn the PDR
concepts and methods presented at the tutorial. Other new
editions of tutorials are planned to use these tools as a
quick way to record live data, visualize and better learn the
estimation methodologies.

V. CONCLUSIONS AND FUTURE IMPROVEMENTS

In this paper we have presented a range of tools that are use-
ful to the research community in indoor/outdoor localization
with smartphones. The GetSensorData app is able to register
signals from diverse sensors at their update rates. New external
sensors can be added in order to centralize the recording
under a common lightweight device with a common time
reference. Several Matlab tools have been designed to parse
sensor information and also to generate ground-truth points
with the support of calibrated �oor maps provided as bitmaps.

9https://www.car.upm-csic.es/lopsi/GetSensorDataSuite
10http://www.ipin-conference.org
11http://evaal.aaloa.org

Although there are some attempts to provide free and open
tools to support indoor localization, this is the �rst stand-alone
open-source multi-sensor framework for smartphone indoor
positioning as far as we know.

Currently, the access to raw sensor data from multiple GNSS
constellations and frequencies is a hot topic. We plan as a
future work to integrate that pseudorange information intonew
headed lines (`GRAW'). Also, we would like to encourage
the research community to contribute to the improvement and
addition of new functionalities in our Git repository9.
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