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Abstract—This paper studies the problem of determining the
position of beacon nodes in Local Positioning Systems, for which
there is no inter-node distance measurements available. Also,
neither the mobile node nor any of the stationary nodes have
positioning or odometry information. The common solution is
implemented using a mobile node capable of measuring its
distance to the stationary beacon nodes within a sensing radius.
Many authors had implemented heuristic methods based on
optimization algorithms to solve the problem, however such
techniques can fail if the range measurements doesn’t provide
enough information to obtain a unique solution. Equally, the
actual methods require a good initial estimation of the node
positions in order to find the correct solution. In this paper
we use rigidity theory to determine the necessary conditions in
which such problem is solvable for Local Positioning Systems.
We also a present a new method to calculate the inter-beacon
distances based in the linearization of the trilateration equations.
This method doesn’t require any initial estimation of the nodes
position. The simulation results show a good estimation of the
beacon nodes position without using any optimization algorithm.

I. INTRODUCTION

There are many applications that require localization sys-
tems in indoor environments, where the Global Positioning
System (GPS) is not available. Localization systems designed
to work in indoor places are known as Local Positioning
Systems (LPS).These systems require the installation of sev-
eral nodes at fixed positions (called beacon nodes) in the
indoor environment. The determination of the beacons position
is done manually using measurement tapes to estimate the
distance to the closet wall of the building. This procedure of
locating the nodes is a cumbersome and error prone procedure
and therefore different techniques have been proposed to
address the problem of obtaining the position of the nodes, also
known as the auto-calibration or auto-localization problem.

Typical solutions are based on the measured ranges from
a group of localized nodes to the beacons with unknown
position. With enough measurements all the beacons can be
localized by trilateration techniques [1]. In [2] four different
positions are used to obtain the beacon nodes positions of a
3D LPS system. In [3] three nodes with known positions are
required plus a group of nodes with unknown positions. In [4]
only the relative distances between four nodes are required.

These methods, however, require a external localization system
which is not always available in indoors environments. So in
order to address a more generic problem it is preferable to
assume that no information of the position of any node is
known.

Duff y Muller [5] proposed a method to solve the multi-
lateration equations by means of a nonlinear least-square
optimization algorithm when no positions are known. The
algorithm is based in a degree of freedom analysis, arguing that
with enough measurements to the beacon nodes at different
positions, enough equations can be obtained to solve all the
beacons positions. In [6] the same principle is used replacing
the optimization algorithm with an Extended Kalman Filter.
However, the degree of freedom analysis does not guarantee
that there is a unique solution in a system of nonlinear
equations, such as the trilateration equations, when the only
data available is the distance measured between the mobile
node and the beacons.

In [7] Priyantha et al. introduced the concept of rigidity
in LPS systems to develop a method that provides a unique
solution of the auto-localization problem. The process requires
a starting subset of nodes (beacons and mobile nodes) that
were verified to have a unique solution. Then an incremental
process of adding more nodes, based in the rigidity theory,
is used to preserve the uniqueness of the solution. Priyantha
also developed a group of movement strategies to obtain the
starting subset of nodes, but these strategies were justified us-
ing a degree of freedom analysis. The rigidity theory has been
widely used in the sensor networks localization problem [8],
although it has not been fully applied on the LPS systems case,
probably because the lack of inter-node distance (connectivity)
between beacon nodes. Also, until recently rigidity theory was
only well developed in 2D problems [9] since the necessary
and sufficient conditions for rigidity in 3D were unknown.
However, the further development in the rigidity theory allow
us to apply this theory to the particular case of LPS systems.

Another problem presented with the optimization algorithm,
or Extended Kalman Filter, is that the convergence of both
depend heavily on the initial conditions used. A proposed
solution to this problem uses multiples initial seeds (estimated
position of the nodes) and then selects the best solution based
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Fig. 1. 3D local positioning system

on a group of objective functions [5]. Other technique employ
a heuristic optimization method, based on the simulated an-
nealing algorithm, to estimate the initial position of the nodes
[10]. In both cases the algorithms could sometimes fall in a
local minima.

In the present paper we use the rigidity theory to verify the
solvability of the auto-localization problem in LPS systems.
We also propose a new closed-form solution for the initial
estimation of the beacon nodes. This paper is organized as
follows. Section II describes the auto-localization problem
when no position information is known of any node. Section
III-A briefly describes the rigidity theory and how it can be
used to verify the solvability of the auto-localization problem
in localization networks. Section IV presents the precise condi-
tions to be meet in order to solve the auto-localization problem
in LPS systems. In section V a new algorithm to obtain the
node positions that doesn’t require any initial estimations is
presented. The proposed solution is then evaluated in section
VI.

II. THE AUTO-LOCALIZATION PROBLEM

Figure 1 shows a typical LPS system, composed by a
group four static nodes, called beacon nodes, and one mobile
node. If the beacon positions are known, then the mobile
node coordinates (N5x, N5y, N5z) can be calculated using the
distance equations, known as trilateration or multilateration
equations:

(N1x −N5x)2 + (N1y + N5y)2 + (N1z −N5z)2 = d2
15

(N2x −N5x)2 + (N2y −N5y)2 + (N2z −N5z)2 = d2
25

...
(N4x −N5x)2 + (N4y −N5y)2 + (N4z −N5z)2 = d2

45 (1)

Where (Nix, Niy, Niz) i = 1, .., 4 are the coordinates of
the beacon node Ni and di5 the measured distance between
the beacon node Ni to the mobile node. If the only data

available is the distance measurements, the auto-localization
problem can be modeled as a distance optimization problem,
where the objective function are the distance equations (1)
and the variables are the coordinates of all nodes. A degree
of freedom analysis is usually used to verify if the auto-
localization problem is solvable. For example, consider a 3D
LPS system with f beacon nodes and m mobile points of
measurements. The points of measurements, also called virtual
nodes, are the coordinates where the mobile node measures its
distance to the beacon nodes. The total number of variables for
the 3D LPS system is given by the number of coordinates of all
nodes minus six coordinates used to define a global coordinate
system. The number of distance equations is equal to m times
the number of points of measurements, if all beacon are always
at range with the mobile node. In order to obtain the position
of all nodes the number of distance equations must be at least
equal to the number of variables:

3(f + m)− 6 ≤ fm (2)

The degree of freedom analysis of (2) is a necessary but
not sufficient condition to have a unique solution for all nodes
positions. Redundant measurements are normally used to mini-
mize this problem. However, in order to evaluate if a particular
node is localizable the precise conditions for a unique solution
are required. In this paper we use rigidity theory to verify the
solvability of the auto-localization problem. Rigidity theory
has been widely used in Ad-hoc networks problems [11] and
we be applied it to the LPS case. A main difference between
Ad-hoc networks and LPS systems is that range measurements
between beacon nodes (or anchor nodes as called in Ad-hoc
networks) are not available in the latter. Hence more restrictive
conditions are required to obtain a solvable network for LPS
systems.

III. SOLVABILITY IN NETWORK LOCALIZATION SYSTEMS

The rigidity graph theory studies when a given graph, with
known number of vertices and edges, has a unique realization.
Applying rigidity to the auto-localization problem means that
the solvability of it can be verified based only on the total
number of beacons and the number of range measurements
available between them. In the next sections we will present
the basic notions of the theory.

A. Basics of the rigidity theory

In order to apply the rigidity theory to the localization
problem we have to represent the LPS system as a undirected
graph. Let’s represent a LPS system with the graph G = V,E
where the n vertices V represent the nodes of the system
(beacon nodes and virtual nodes), and the edges E, represent
the availability of range measurements between the nodes.
Each edge Eij is associated with an edge length dij which
represents the range measurement between nodes Ni and
Nj where i, j = 1..n. A solution of the positions of the
nodes is called a configuration P (V ) = (p1, . . . , pn), where
pi = (Nix, Niy, Niz) represents the position of the node



Ni. A framework G(P ) refers to a graph G along with
a configuration P . A configuration is called generic if the
coordinates are algebraically independent over the rational, i.e.
no three points form line, no four points form a plane in the
3D space, etc. In this paper we will assume that the node
locations are generic. Depending of the geometry of the graph
G it can have more than one configuration (more than one
solution) for a given set of distance measurements dij .

The network-localizability problem, in rigidity theory, refers
to determining if a given graph G with a set of range
measurements dij has only one associated configuration P (V ).
If that is the case we will say that the network is solvable. Once
a network is verified to be solvable the next step is to obtain
the respective configuration P (V ), i.e. the nodes coordinates.
This is called the network localization problem with distance
information. In the following sections the basics of the rigidity
theory are presented for the 2D and 3D cases.

B. Conditions for unique realization in R2

A framework G(P ) is called flexible if exists a continuous
deformation from the given configuration P to another P ′ so
that the edge lengths are preserved as shown in figure 2-a.
If no such deformation exists, then the graph is called rigid.
Obviously a flexible graph will generate multiple solutions of
the node positions, therefore a graph with unique realization
has to be rigid.

The rigidity of a graph depends only on its connectivity and
can be verified using the Laman’s theorem:

Theorem 3.1: [12] A graph G with n vertices and 2n − 3
edges is rigid in R2 if and only if no subgraph has more
than 2n′ − 3 edges where n′ is the number of vertices of the
subgraph.
It is important to note that for Rd d ≥ 3 the Laman’s theorem
is a necessary but not sufficient condition.

Laman’s theory states that at least 2n−3 edges are required
to obtain a rigid graph. This can be explained with a degree
of freedom analysis: every structure in the plane have three
internal degrees of freedom that corresponds to translations
and rotations. In addition, every vertex have two degrees of
freedom in R2 . Since trivial motions (translation and rotation)
does not imply the deformation of the graph (the relative
positions between vertices are preserved), the total number of
degrees of freedom for flexibility are 2n−3. Since every edge
removes, at most, one degree freedom it is necessary at least
2n−3 edges to obtain rigidity. However, such condition is no
sufficient to obtain a rigid graph, the edges must also be well
distributed in order to remove all the degrees of freedom. Such
distribution is given by the second condition of the Laman’s
theorem which verifies the number of edges included in every
subgraph of G.

A rigid graph can also have more than one realization in
form of partial reflections (figure 2-b). The conditions in which
such reflections occurs are given by theorem 3.2:

Theorem 3.2: [12] A rigid graph positioned generically in
Rd will have a partial reflection if and only if it is not vertex
(d+1)-connected

a) flexible b) rigid c) globally rigid

Fig. 2. Examples of different types of graphs based on their rigidity

The (d + 1) connectivity requirement is well know in the
localization problem where in order to obtain a unique position
of a mobile node it is necessary the range measurements of at
least (d + 1) beacon nodes.

Finally theorems 3.1 and 3.2 does not ensure a unique
realization of the graph and is necessary to introduce a third
requirement called redundant rigidity (figure 2-c):

Definition 3.1: [12] A rigid graph positioned generically in
Rd is redundantly rigid if after the removal of any single edge
e ∈ E the remaining graph is also rigid in Rd

Clearly the requirement of redundant rigidity also includes
rigidity as defined in theorem 3.1. Finally we can give a
definition of the uniqueness of realization a graph, called
global rigidity (figure 2-c) based in theorem 3.2 and definition
3.1

Theorem 3.3: [12] A graph is generically globally rigid in
R2 if and only if it is 3-connected and redundantly rigid in
R2

Theorem 3.3 shows that the uniqueness in the solution
at R2 is a property of the graph, and only depends on the
connectivity between the nodes, not the geometry.

We can test if a graph is globally rigid by verifying if it is
3-connected and redundantly rigid. The first condition is easily
verifiable, and the latter condition can be tested by eliminating
one by one a single edge of the graph and verifying if the
graph is still rigid using Laman’s theorem. Several other test
algorithms of rigidity had been implemented based in Laman’s
theorem, a comparison between different algorithms can be
found in [13].

Other methods to verify global rigidity in R2 rely on the
inductive construction of the graphs being tested. Beginning
with a known globally rigid graph, a sequence of global
rigidity preserving operations can be used to obtain the tested
graph, therefore showing that such graph is also globally
rigid. For example, the (d+1)-connectivity provide a method
to construct globally rigid graphs:

Theorem 3.4: [7] A graph is globally rigid in Rd if it is
formed by a starting globally rigid graph at which more (d+1)-
connected vertices had been added

Theorem 3.4 is valid for R2 and R3. Also other operations
that preserves global rigidity can be used such as edge split-
ting, vertex addition and vertex splitting. A further explanation
of these operations can be found in [14]



C. Conditions for unique realization in Rd, d ≥ 3

From a recent work in [15] it is known that global rigidity of
point formations in all dimensions is a property of the graph.
This means that the global rigidity of graph in Rd, d ≥ 3 can
be tested, although there is currently no efficiently checkable
graphical characterization as in R2. In order to evaluate if a
graph is globally rigid in Rd, d ≥ 3 , first we need to introduce
the notion of equilibrium stress [16].

For a given graph G = (V,E) we can assign to each edge
Ei,j ∈ E a weight ωij , also known as stress. We say that a
vertex i ∈ V is in equilibrium with respect to the stress vector
ω = (· · · , ωij , · · · ) if the values of ωij are such that:

n∑
j=1

ωij(pj − pi) = 0 (3)

where p(i) represent a given position of the vertices Vi in
Rd.

The stress vector can be arranged into a n × n symmetric
matrix Ω, known as the stress matrix, where the off-diagonal
entries are denoted as −ωij and the following conditions hold:

1) ωij = 0 when i 6= j and i, j is not in E
2) [1, 1, · · · , 1]Ω = 0
The stress matrix can then be used as a sufficient condition

to check global rigidity as proposed by Connelly:
Theorem 3.5: [17] If P is a generic configuration in Rd,

such that there is a stress, where the rank of the associated
stress matrix Ω is n − (d + 1), then the framework G(P ) is
globally rigid in Rd.

Later Gortler et al [15] showed that this condition is
also necessary, implying that the global rigidity is a generic
property of the graph. Using these results, Gortler developed
a numerical algorithm based on the stress matrix to analyze
if a given graph is globally rigid. The algorithm is further
explained in the next section.

IV. SOLVABILITY OF THE LPS AUTO-LOCALIZATION
PROBLEM

In this section we will apply the rigidity theory to obtain
the necessary and sufficient conditions to solve the auto-
localization problem in LPS systems. As stated before the LPS
system is composed by a group of uniquely identifiable static
nodes (the beacon nodes), and a mobile node which is able
to measure the distance to the static nodes within a specified
radius. No positioning or odometric information is available in
the nodes . Given a group of distances measurements between
the mobile node to the static nodes, we want to determine the
positions of all nodes. Before estimating the node positions
the solvability of the problem must be verified. The problem
is solvable if with the available distance measurements we can
determine the coordinates of the nodes without ambiguity. If
the problem is no solvable, there are multiple solutions for the
node positions that cannot be detected without adding more
information to the problem.
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Fig. 3. Sequence of edge splitting operations to demonstrate the rigidity of
K(3, 4)

To apply the rigidity theory we will represent the LPS
system using a specific subtype of undirected graphs called
bipartite graph. A bipartite graph is a graph whose vertices
are divided in two groups, where each vertex is connected
only to the nodes of the other group. Clearly for LPS systems
these groups are divided by beacon nodes and virtual nodes,
since the only range measurement available are between the
beacons and the mobile node. A bipartite graph is called
complete bipartite graph when all the vertices of one group
are connected to all the vertices of the other. We will use
the notation K(f, m) to represent a complete bipartite graph
composed by f static nodes Ni i = 1..f and m virtual nodes
Nj j = f + 1..f + m.

A. Solvability in R2

In the following, we will assume the stationary nodes and
the mobile node are all situated in the plane. We will begin
with a system composed by the minimum necessary number
of beacon nodes. By a trilateration point of view we know
that a necessary condition for R2 localization is that there
are at least three beacon nodes. We need now to determine
how many virtual nodes are required in order to obtain a
globally rigid graphic. Let’s star with a general case of the two
dimensional version proposed in [7], which was justified using
a degree of freedom analysis, composed by three beacon nodes
and four virtual nodes. In other words the complete bipartite
graph K(3, 4). Using the inductive construction method with
the edge splitting operation we show that such bipartite graph
is rigid.

Edge splitting consists in replacing any edge Eij by a new
node Vk connected by the edges Eki, Ekj and Ekz where
z 6= u, v. The edge splitting operation has been shown to keep
the global rigidity in R2 [17]. Figure 3 shows with a sequence
of edge splitting operations on the globally rigid graph K(4)
(composed with four vertices all connected) how we can obtain
the bipartite graph K(3, 4), therefore demonstrating that the
K(3, 4) graph is globally rigid in R2.

We can now evaluate other bipartite graphs configurations
based in the K(3, 4) graph. For example, for a system with
four static nodes we have that:

Proposition 4.1: For a system composed by f = 4 static
nodes, at least three virtual nodes are required to obtain a
globally rigid graph.



Because there is no functional distinction, in a graph repre-
sentation, between static and virtual nodes K(4, 3) ≡ K(3, 4),
and therefore K(4, 3) is also a rigid graph.

From theorem 3.4 we know that adding any number of
virtual 3-connected nodes to the K(3, 4) will conserve the
global rigidity of the graph. Therefore we can add as many
virtual nodes to the system as long they are 3-connected to the
static nodes. The resultant redundancy in measurements can
then be used to improve the estimation of the node positions.
It is also possible to add more static nodes to generalize the
proposition 4.1:

Proposition 4.2: For a system composed by f ≥ 4 static
nodes, at least three virtual nodes are required to obtain a
globally rigid graph, i.e K(f, 3) for f ≥ 4.

Proposition 4.2 allows to localize an extended number of
beacon nodes with few virtual ones. This, however, is an
impractical configuration because requires that all beacon
nodes are always in range with the mobile one. Instead an
iterative approximation can be used for an extended number
of beacon nodes. First we obtain a globally rigid graph with
three beacon nodes and then we can add a new beacon node
following the next procedure:

Proposition 4.3: To add a static node to a globally rigid
graph, at least three virtual nodes are required to maintain
global rigidity. The virtual nodes must be 3-connected to the
rigid graph.

Finally a similar procedure as proposition 4.3 can be used
to connect two globally rigid graphs. This case can be useful
when the nodes are distributed in separated areas, e.g. two
adjacent rooms.

Proposition 4.4: To connect two globally rigid graphs, at
least three virtual nodes are required in order to maintain
global rigidity. The virtual nodes must be 3-connected to both
rigid graphs.

B. Conditions for solvability in Rd, d ≥ 3
Although there is currently no efficiently checkable graph-

ical method to verify if a graph is globally rigid in Rd where
d ≥ 3, we can use a numerical algorithm proposed by Gortler
et al [15]. They also demonstrated that the algorithm generates
no false positives and very few false negatives. The following
algorithm is based on the theorem 3.5 and uses the stress
matrix in order to verify global rigidity:

1) Pick a framework P for a graph G with random vertex
coordinates

2) Find a stress vector ω solving (3)
3) Create the stress matrix Ω with the previous obtained

vector ω
4) If the rank of Ω = n− (d + 1) declare G globally rigid
At least 4 static nodes are required for localization in R3,

so we need to find how many virtual nodes are necessary to
form a globally rigid graph. Using the matrix stress test we
verified that the bipartite graph K(4,7) is globally rigid.

If we add more beacon nodes the number of necessary
virtual nodes are reduced. For example, for 5 static nodes 6
virtual nodes are necessary, and with 6 statics nodes only 5

are required. For 7 or more static nodes we obtain the next
condition:

Proposition 4.5: For a system composed by f ≥ 7 in Rd

d ≥ 3, at least four virtual nodes are required to obtain a
globally rigid graph, i.e K(f, 4) for f ≥ 3.

Finally propositions 4.3 and 4.4 can be extended for 3D:
Proposition 4.6: To add a static node to a globally rigid

graph in Rd d ≥ 3, at least four virtual nodes are required
to maintain global rigidity. The virtual nodes must be (d+1)-
connected to the rigid graph.

Proposition 4.7: To connect two globally rigid graphs in
Rd d ≥ 3, at least four virtual nodes are required to maintain
global rigidity. The virtual nodes must be (d+1)-connected to
both rigid graphs.

V. LINEAR SOLUTION FOR THE AUTO-LOCALIZATION
PROBLEM

Once all the conditions for a unique solution of the auto-
localization problem had been verified, the next step is to
estimate the beacons positions using the available distance
measurements. Due to the nonlinearity of the distance equa-
tions an iterative optimization algorithm is usually employed.
However these algorithms require a good first estimation
of the nodes position in order to avoid being trapped in
local minima. By contrast, we propose here a closed-form
solution of the auto-localization problem that doesn’t require
any initial estimate. The algorithm is based in the linearization
of the trilateration equations by expanding those equations
and grouping all nonlinear terms in additional variables. This
approach requires a mayor number of virtual nodes to solve the
new added variables. This, however, doesn’t represent a real
drawback since the optimization methods also use redundant
measurements to improve the solutions.

We begin with the simplest LPS configuration for 2D with
unique solution, which is composed of three beacon nodes Ni

where i = 1..f (f = 3) and at m virtual nodes Nj where
j = m + 1..m + f (f ≥ 4). Without loss of generality, we
can choose a coordinate system where the coordinates of N1

are (0, 0) and of N2 are (N2x, 0). Next, using the distance
equations between beacon nodes, the trilateration equations
can be rewritten as a function of two groups of distances
measurements: the inter-beacon distances d12, d13, d23, which
are the unknown variables, and the distances between beacon
nodes and virtual nodes d14, d24, d34..., d3f+m, which are the
available data. The final equation can be expressed in the linear
form AX = B with f = 3 beacon nodes and m = 6 virtual
nodes:

X =



d2
13 + d2

23 − d2
12

d2
13

d2
12

(d2
12 + d2

23 − d2
13)

d2
23

d2
12

(d2
12 + d2

13 − d2
23)

d2
13

d2
12

d2
23

d2
12

d2
13d

2
12


(4)



B =


D314

D315

...
D319

 (5)

A =


d2
34 d2

24 d2
14 D324D214 −D314D214 −1

d2
35 d2

25 d2
15 D325D215 −D315D215 −1

...
...

...
...

...
...

d2
39 d2

29 d2
19 D329D219 −D319D219 −1

 (6)

Dijk = d2
ik − d2

jk, i, j = 1, 2, 3. k = 4, 5, · · · , 9. (7)

The matrix A and the vector B are known, composed
with the distance measurements from the mobile node. The
vector X include the unknown inter-node distances. Since
the dimension of the vector X is six, at least six virtual
nodes are required to solve the linearized equations, but more
virtual nodes can be added in order to improve the solution.
Once obtained X the unknown variables d12, d13, d23 can be
calculated by:

d12 =

√
X2
X4

+ X3
X5

2
(8)

d13 =

√
X1 + X3

X5

2
(9)

d23 =

√
X1 + X2

X4

2
(10)

Finally, when the inter-node distances are obtained, the
beacon nodes coordinates can be calculated using them:

N1 = (0, 0)
N2 = (d12, 0)

N3 =

(
d2
12+d2

13−d2
23

2d12
,

√
d2
13 −

(
d2
12+d2

13−d2
23

2d12

)2
)

(11)

Because of the complexity added by a third coordinate, the
3D case cannot be solved with the same technique used in 2D.
The inter-beacon distances cannot be obtained from the vector
X using linear algebra. However, the 2D solution can be used
in a 3D LPS system if all the beacon nodes are positioned in
a plane. Such configuration is not uncommon since in many
LPS systems the beacon nodes are positioned at the ceiling at
the same height. Another requirement is that all virtual nodes
must be positioned in a plane parallel to the beacons plane.
This can be achieved by moving the mobile node at the same
height with regard to the floor level. Since the 3D solution
requires distribution of the nodes which is not generic, i.e. the
nodes are positioned in two different planes, multiple solutions
might occur in the form of partial reflections of the virtual
nodes at both sides of the beacons plane. This problem be can

eliminated by choosing the height coordinate z of the virtual
nodes to be always positive.

VI. SIMULATIONS AND RESULTS

In order to evaluate the performance of the proposed
method, a LPS system was simulated using MATLAB. A
group of four beacon nodes where placed at the points:
(0,0,0), (300,0,0), (300,120,0) and (300,300,0). A group of
21 virtual nodes were placed at a distance of 250 cm from the
beacon’s plane. They were distributed in a circular pattern in
order to avoid that three or more points form a line. All the
nodes positions are unknown. The ranging data was generated
with a Gaussian noise with zero mean added. The value
of the standard deviation of the measurement’s noise goes
from 0 to 5 cm , and for each noise level 100 simulations
with different distance measurements were performed. The
performance of the proposed method was evaluated using the
average deviation of the beacon localization error:

ep =
1
n

n∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (12)

where (xi, yi, zi) are the real coordinates of beacon i and
(x̂i, ŷi, ẑi) are the estimated ones.
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Figure 4 shows the scheme of the simulated LPS system.
Since our algorithm only calculates the position of 3 beacon
nodes, the beacons were divided in two subgroups of 3 nodes:
nodes 1, 2, 3 and nodes 1, 2, 4. The two subgroups positions
where calculated independently and later referenced to the
same global coordinate system. Since we can choose any
subgroup of three nodes, we can have redundant inter-beacon
distance estimations that can be used to improve further the
estimations. Figure 4 also compares the calculated positions
of the beacon nodes with their real positions. A 2 cm noise
standard deviation was used. Since node N1 is always used as
the origin of coordinates it doesn’t have any positioning error.



The simulation shows that all the other beacon nodes were
localizated with good accuracy.
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Figure 5 shows the localization errors (average and max-
imum deviation) with different values of noise levels. The
average localization error presents an approximately linear
relationship with the standard value of the noise level, be-
ing approximately 1.5 times the noise level. The maximum
localization error presents also a linear relationship of approx-
imately 3 times the noise levels in the 0 to 2.5 cm noise range.
This results shows an excellent first estimation of the beacon
node positions considering no initial estimation was used.
These results can be used as an initial seed in optimization
algorithms to improve further the node positions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a solution for the auto-
localization problem of LPS systems. First the rigidity theory
was used to obtain the precise conditions in which an auto-
localization problem is solvable for LPS systems. Satisfying
these conditions guarantees that we have all the necessary
information to find all the nodes positions. We also proposed a
new method to calculate the beacon nodes position. In contrast
with the other available techniques, our method don’t rely on
a first estimation of the beacon positions. Since the method
uses a linearization of the auto-localization problem, it doesn’t
presents local minima errors. The method was developed for
a 2D LPS system and for a 3D case where all beacon nodes
are positioned in a plane. The simulation results shows a good
estimation of the beacons position and can be used as an initial
value for other methods to improve the estimation.

We plan to test the proposed algorithm in a real scenario
with a 3D ultrasonic positioning system. We also want to
improve the algorithm in order to be robust against the pres-
ence of outliers, which is a well known problem in ultrasonic
systems. Finally we will explore ways to eliminate some of

the restriction of the 3D algorithm, e.g. not requiring that all
the beacon nodes must be positioned in a plane.

VIII. FUTURE WORK
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