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ABSTRACT (short: <150 words) 

This paper presents a computer vision system for measuring the weight of gobs during a glass 
forming process, and a control strategy to correct automatically any weight deviation from a given 
set-point. 

The system developed for measuring the weight of a gob is based on a reliable gob area 
estimation using image-processing algorithms. A monochrome CCD high-resolution camera and a 
photo-detector for synchronizing acquisition are used for registering gob images. Assuming that 
the gob has symmetry of revolution about the vertical axis, the proposed system estimates the 
weight of gobs with accuracy better than ±0.75%. 

A learning weight control strategy is proposed based on a PI-repetitive control scheme. The 
weight deviation from a set point is used as a control signal to adjust the glass flow into the feeder. 
This regulation scheme allows effective weight control, canceling mid and long-term effects. The 
tracking error, ±1.5%, means a reduction of 40% when compared with a traditional PI controller. 
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ABSTRACT ( <200 words) 

This paper presents a computer vision system for measuring the weight of gobs during a glass 
forming process, and a control strategy to correct automatically any weight deviation from a given 
set-point. 

The gob weight measurement system developed is based on a monochrome CCD high-
resolution camera and a photo-detector for synchronizing the frame acquisition. The molten glass 
provides the illumination, so a high contrast image is obtained with a bright object and dark 
background. Several image-processing algorithms are presented for reliable area estimation. 
Assuming that the gob has symmetry of revolution about the vertical axis and uniform mass 
density, the proposed system estimates the weight of gobs with accuracy better than ±0.75%. 

During the formation of molten glass gobs, several noise sources can cause a deviation in the 
weight from a predefined reference value. To solve this problem, a learning weight control strategy 
is proposed based on a PI-repetitive control scheme. The weight deviation from a set point is used 
as a control signal to adjust the glass flow into the feeder. This regulation scheme allows effective 
weight control, canceling mid and long-term effects. The tracking error, ±1.5%, means a reduction 
of 40% when compared with a traditional PI controller. 

 

 

1. INTRODUCTION 

Fabrication of glass is a complex industrial process, where the same production lines are 
employed in different manufacturing processes. Manual modifications are commonplace and are a 
time-consuming, intuitive task that is usually done by operators with great experience. An 
automated inspection and control system is proposed which can manage most routine operations. 

In the production of glass dishes the key component is the feeder that transforms a continuous 
flow of glass into a discrete sequence of glass drops. The feeder (see figure 1 right) consists of a 
cylinder that can be moved vertically to regulate the gob size, a piston used to push glass out, and 
a shear mechanism to cut the molten glass to obtain the gobs from which the plates are formed. In 
the fabrication process, control is done by manually moving the cylinder up and down to change 
the glass flow. It is important to remark that the cylinder rotates periodically with a period that 
expert operators adjust empirically. Gobs fall down over molds, and dishes are shaped by 
centrifugal forces. 

Several factors can cause a deviation of the weight of gobs from a predefined reference value. 
First, there is a random perturbation caused by the lack of synchronization of mechanical devices 
such as plungers, pistons, etc. Changes in the spinning direction of the tube inside the feeder are 
necessary to generate a homogeneous composition of the molten glass and cause significant mid-
term drifts that are quite periodic and repetitive. We have observed that the gob weight oscillates 
with a period that corresponds exactly with the rotation period of the feeder tube, and can be 
corrected by changing the vertical position of the feeder tube. Additionally, long-term drifts due to 
changes in the viscosity of the raw glass material affect the weight along several hours of 
operation. 

All these effects result in glass products of varying weight and diameter. In current production 
processes, about 10% of the final goods have to be rejected because they don’t fulfill quality 
requirements, causing a decrease of efficiency and productivity. 

There are different commercial systems that control weight, shape and temperature [1, 2]. 
Those systems are based on linear cameras and perform image reconstruction based on 
calculation of the speed of the falling gob. Some of them use a dual frequency infrared pyrometer 
to measure temperature in different points inside the gob. The weight control strategy is normally 
based on a PID (Proportional-Integral-Derivative) implemented in a PLC (Programmable Logic 
Controller), which actuates by adjusting the cylinder height or the plunger position. 
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We propose a system that uses a high-resolution matrix camera to capture a picture of the gob. 
This method allows a precise area estimation without the need of image reconstruction and gob 
speed estimation. Instead of using a simple PID for the final control we have developed a digital 
repetitive controller to predict the rotation changes of the feeder tube. A weight scale parallel to the 
production line is used to calibrate the system, giving the actual weight of some dishes taken 
approximately every sixty minutes. In the next sections we will give detailed information of the 
proposed gob inspection system. 

 

2. PROPOSED GOB INSPECTION SYSTEM: PRINCIPLE OF OPERATION 

The system we have developed can be divided in three different modules that can be studied 
separately: 1) weight estimation module, 2) control module, and 3) calibration module. Figure 1 
shows those modules and the information flow among them when they operate together.  
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Figure 1. Gob Inspection System 

The weight estimation module captures an image and executes an image-processing algorithm 
that is based on an intensity-level threshold for generating a binary image. Erosion and dilation 
morphological operators are used for reducing image noise. Region labeling and connection 
processes are used in order to distinguish pixels corresponding to the valid gob from other pixels 
forming significant background residuals that do not belong to the gob area. Once the area is 
estimated, the volume of the gob is derived, and consequently its weight, assuming a valid glass 
density value and a calibration value which is updated once every half an hour. 

Control is made with estimated weight values and the position of the feeder tube. When the 
estimated weight deviates from the reference, the position of the feeder tube is modified in height 
via an AC motor. The achieved displacement is measured using a LVDT (Linear Variable 
Displacement Transformer) sensor. As we previously reported, the rotations of feeder tube 
produce weight perturbations, but this module uses a learning repetitive control to anticipate the 
response. 

The Calibration module measures the real weight of dishes using a precision weight scale in the 
production line. A calibration constant is updated once an hour by comparing the real weight with 
weights calculated using the image processing software. This calibration constant integrates 
parameters that are not precisely known, such as glass density, focal length of the camera lenses, 
distance from the camera to the gob, and so on, and is used to match estimated weight with real 
values. 

 



 4 

3. MEASUREMENT SUB-SYSTEM 

The weight measurement estimation can be divided into the following steps: 1) Image 
acquisition, 2) segmentation and image improvement, and finally, 3) weight estimation. The next 
sub-sections give insight into these points. 

3.1. Image acquisition.  

To select a camera for image acquisition we used the following reasoning. We assume that we 
can approximate a gob by an ellipsoid with symmetry of revolution around its vertical axis. 
Assuming a typical gob weight of 410 grams with nearly constant density and a maximum error to 
be limited by ± 2 grams, the camera resolution must be at least 640x480 pixels. To avoid the use 
of complex sub-pixel algorithms [3, 4, 5], which are also more time-consuming, we have chosen a 
standard high-resolution 1026x1296 pixel camera (JAI CV-M1) which at one meter distance from 
the object plane gives a pixel size of about 0.1 by 0.1 mm. 

When considering the gob as a moving object, it is necessary to take into account the 
integration or exposure time to use. Neglecting air friction, the velocity of the gob when it is in front 
of the photo-detector is independent of its volume. For a free-falling height of 0.5 meters the 
velocity of the gob is approximately 3 m/sec. In order to avoid a vertical displacement of the gob 
larger than the pixel resolution, that is, 0.1 mm, the exposure time should be less than 1/ 3000 s. 
This requirement is satisfied by JAI CV-M1 camera, which has an exposure time ranging from 1 
second to 1/10000 seconds. The default operating temperature valid for our camera ranges 
between -5ºC and 45ºC, so in order to operate close to the feeder the camera is cooled using a 
fan. We have chosen an optical objective with a relatively long focal length (f = 35 mm) because 
this type of lens allows acquisition of images with low distortion, and it has no problems with limited 
depth of field, because distance to the gob is always constant. 

To synchronize the gob presence with the camera acquisition trigger, we use a sensor based on 
a photo-detector that generates a TTL pulse when it detects an intense source of light. This pulse 
can be delayed in a range between 10 and 90 milliseconds in order to adjust the centering of the 
gob in the registered image. The sensitivity level of the detector can be adjusted to trigger the 
camera acquisition when enough illumination reaches the sensor. A black cylindrical head is 
attached in front of the photo-diode to let enter only light coming along the cylindrical major axis of 
the photo-diode. Therefore, light coming from any direction other than this axis is blocked, thereby 
eliminating additional light sources in the surrounding working-space that could cause false 
triggers. 

We tested also the acquisition of two different views of the same gob using some catadioptric 
elements [6], in order to have as much information as possible to compensate any asymmetry. 
Experimentally, we found that the revolution symmetry of the gob is so high that using two views is 
redundant. A single view image is displayed in Figure 2. Some dark spots appear on the object, 
due to shear lubricant droplets, and some bright areas appear on the background due to specular 
reflections on some shiny metallic feeder parts. 

In the field of sub-pixel estimation, it is known that the accuracy of algorithms depends on the 
camera orientation with respect to the boundaries of objects [3, 4, 5]. It is recommended to place 
the camera so that its reference frame axes intercept the longitudinal axis of the object at 45º, in 
order to reduce the sampling pixel errors. If we would align the axis of the camera to the 
longitudinal axis of the gob, and consider a typical gob length of approximately 1000 pixels, the 
digitization error might be in the worst-case ±0.5% (±2 grams). In our application the camera is 
placed so that gobs always fall down with an angle between 1 and 3 degrees. This slight rotation is 
enough to reduce significantly sampling errors down to ±0.2 grams, which is reasonable. 
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3.2. Segmentation and improvement of the image 

Before we can estimate the weight of the gob, it is necessary to segment the image, i.e. remove 
the background and extract the region of the image corresponding only to the gob. This 
segmentation task is usually done, especially for images with a high contrast, by binarization and 
requires the selection of a gray level threshold. In reference [7], different techniques are described 
to select the threshold that involve choosing a gray level t, such all gray levels greater than t are 
mapped into the object and the rest are mapped into background. When t does not depend on the 
gray level of (x, y) it is called global threshold and has the same value for all image points. 

 a)

 HISTOGRAM

  b)

 c)

 d)
 

Figure 2. (Left) Intensity image and Histogram of a typical gob, (a) Binarized image, (b) Bright 
areas, (c) Dark spots, (d) Boundary holes 

 
Plotting the histogram for a typical gob image (Figure 2), we see that there are three peaks, the 

two of them to the left correspond to background and the one to the right is the gob. We have seen 
that the optimum gray-level value to be used as threshold, which is computed using classical 
methods based on assuming that a histogram is formed by two overlapped gaussian distributions 
[7], performs worse than using a value selected experimentally. A threshold value of about 50, in 
an 8-bit intensity gray scale (0 is black and 255 is white), is a good choice for the type of images 
processed in our application. Once the image is binarized (Figure 2.a) we see that some dark 
spots and bright areas are still present. Bright areas (Figure 2.b) have a typical size of around 150 
pixels, which can affect the final gob weight estimation by 0.46 grams. The dark spots (Figure 2.c) 
are different in size and their contribution to the volume depends on whether they are in the edge 
or inside the object. Those inside the gob region have an area of about 220 pixels (0.7 grams), but 
those in the boundary (Figure 2.d) are 350 pixel or higher (1.08 grams). 

To obtain an image without bright areas, a region labeling process is executed. Once the image 
is labeled, we connect the regions belonging to the same object but with different labels. Now that 
we have a gob with no bright areas but with dark spots, we eliminate them using a morphological 
operator (closing filter) that concatenates two actions, dilation and erosion [11]. The dilatation 
function adds pixels to the boundaries of binary objects. This function will add pixels wherever 
pixels in the image intersect nonzero elements in the structuring element. The erode function 
removes pixels from binary objects in the same way that the dilation adds them. When the regions 
are expanded the dark spots inside the gob disappear, and after erosion spots are not 
regenerated. Occasionally, large holes close to the boundary will remain unfiltered. 

3.3. Algorithms to obtain the weight 

Now that we have a segmented image free of noise, we want an estimation of the gob weight. 
Assuming that gobs can be modeled as ellipsoids (see figure 1) because they have symmetry of 
revolution around the major vertical axis, c, and the gob horizontal cross-section is approximately a 
circle defined by the minor axes, a and b, then the expression to compute the gob volume is, 
volume  = 4/3· π ·a··b·c = 4/3·area·b. The area is estimated by counting all pixels set to one in the 
binary image. If we assume constant density, the weight of the gob is computed by this expression: 

weight = density · volume = cte · area · b  (eq. 1) 
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Therefore the weight depends on a constant, cte, (including among others the glass density, 
focal length,…), the area of the gob in the image, and the semi-minor axis of the ellipsoid, b, which 
is not visible in the image. Note in eq. 1 that the area and b are dependent each other, so in fact 
weight depends not linearly with area. Considering that the size and shape of gobs do not change 
significantly, we can assume that b is quite stable and constant; therefore there is a linear 
relationship between weight and area.  

weight = cte’ · area  (eq. 2) 

where, cte’, is a constant that depends on glass density, gob depth (b), optical focal length, 
distance from camera to gob, and so on. This constant is estimated from the real weight value 
provided by the calibration module (Figure 1 bottom), by a least square fitting. 

3.4. Experiments and validation 

The validation of the above-described algorithms is experimentally done by means of capturing 
300 gob images and weighing the corresponding final dishes. The reference value of this particular 
product is 410 grams. In Figure 3.a the real weights are plotted together with a representation of 
changes in the spinning direction of the feeder tube. It can be seen how those changes, 
represented by the square-like plot (top and bottom of square-like plot means CW and CCW 
spinning directions, respectively), affect the real weight. The difference between real weight and 
the values obtained with the image processing algorithms is depicted in Figure 3.b, where it can be 
observed that the maximum error in the weight measures is ±3 grams. The RMS value for the  
measurement algorithms is 1.2 grams. 
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Figure 3. a) Real weight and CW (Clock Wise) and CCW (Counter Clock Wise) tube rotations, 

b) Difference between calculated and real weight 

 

4. CONTROL SUB-SYSTEM 

This section presents the description of the control module designed for weight regulation and 
mid-term disturbance cancellation. We present first the plant model identification procedure and 
after that the design of a controller based on the previously identified plant model. 

 

4.1. Identification of the system plant 

In our application, the plant to be controlled is the feeder, which we can consider as a SISO 
system where the input is the height of the feeder tube and the output is the weight of each gob. 
Other parameters such as glass temperature, tube rotation cycle, synchronisation of shear, and so 
on, are considered as disturbances. 

In order to obtain the plant model, we excited the feeder with a set of step-like tube 
displacements, while the output of the plant was registered. Using Matlab’s system identification 
toolbox and a sample period of 1 second, we found that the discrete transfer function has 4 poles 
(0.491±0.335i; -0.33±0.31i) and 4 zeros (-1.52; 0.629±0.735i; 0) on the ‘z’ plane. One of the four 
zeros (-1.52) is outside the unit circle so the plant model is a non minimum-phase system. 
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4.2.Control strategies 

In this paper we have already described short-, mid- and long-term disturbances, which 
correspond to weight noise of different types: random white noise, periodic noise, and drifts, 
respectively. In Figure 4.a we illustrate short- and mid-term disturbances for the open-loop plant 
(the measured RMS disturbance is 10.1 grams) . 

The control strategy we present aims to cancel the mid- and long-terms disturbances and does 
not cope with the random component which can be only diminished by improving the feeder 
design. 
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Figure 4.a) Open-loop response to a constant reference. b) PI control performance. c) PI-repetitive 

controls performance. 

As can be seen in Figure 4.b, we have developed a PI controller to cancel long-term 
disturbances and some of the mid-term or periodic errors. The PI parameters (Ki and Kp) were 
selected to ensure stability under significant deviation between the plant model and the time-
variant feeder plant. Those constants are Ki = 0.2 and Kp = 0.2. The PI controller eliminates long-
term drifts and minimizes to some extent cyclic errors; the resulting RMS error is 6.27 grams. 

A learning control strategy using a repetitive controller (Figure 5) is proposed, to improve the PI 
controller that is unable to cancel out all the cyclic disturbances. This type of control is especially 
appropriate for periodic disturbances, because it learns from previous cycles the control law to be 
generated in the future. Therefore, it is able to predict future perturbations anticipating the control 
action before the predicted disturbance appears [8, 9, 10]. The repetitive controller is represented 
by this discrete equation:   

outR (k) = outR (k - M) + KL . inR (k - M)   (eq. 3) 

where k is an integer value representing discrete time at the sampling period T according to 
expression t=kT (T is approximately 1 second); M is the period of the cyclic disturbance in units of 
samples (typically M=40 samples); KL is the learning constant that represents the speed of 
incorporating innovations into the learnt sequence (KL= 0.5); inR  is the input to the repetitive 
controller which corresponds to the weight error (Figure 5, left); and outR is the output of the 
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repetitive controller that added to the reference weight is used as the reference to the PI closed-
loop block (Figure 5, right). 
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Figure 5. PI-repetitive control diagram 

 

A zero-phase low pass filter, F, (see Figure 5) is used inside the repetitive loop to make the 
repetitive controller more robust against non-perfect periodic disturbances. This filter makes the 
controller less effective in case of periodic disturbances, so a trade-off between robustness and 
effectiveness is found. The z-transform of the selected filter is in discrete time: 

outF (k) = (1/6) . inF (k + 1) + (2/3) . inF (k) + (1/6) . inF (k - 1)   (eq. 4) 

where k is again the discrete time, inF is the input to the F filter, and outF is the output of this 
filter.  

The PI-repetitive control, as is show in Figure 4c, improves the response of the PI controller by 
itself, reducing most of the cyclic errors. The RMS value, 3.6 grams, represents about a 40% error 
reduction compared to the classical PI controller. 

 

5. CONCLUSIONS 

The most common sources of weight variation in the process of fabrication of glass plates have 
been analysed. An algorithm for weight control of the forming glass gobs has been introduced, and 
it is outlined as follows. As a first step we develop a module for measuring the weight of molten 
glass gobs based on image processing algorithms for estimating the area of these gobs. The 
segmented images are obtained by binarizing the acquired intensity images by a fixed threshold. 
Image noise is reduced using erosion and dilatation morphological operators and applying region 
labelling and connection techniques. The estimation of the gob weight, which is derived from the 
area of the gob, is fed into the control loop. Typical weight estimation has a RMS error of 1.2 
grams (±3 g.), which for a usual product weight, accounts for only a ±0.75% deviation. 

Using the estimated gob weight and the reference value of each product, a learning repetitive 
control scheme is implemented that anticipates perturbations in order to reject disturbances. This 
control has a PI regulator to cancel long-term errors and some of the mid-term cyclic errors. A 
repetitive regulator is implemented to reject the periodic disturbances that are not totally cancelled 
by the classical PI control. A filter is added to give robustness against non-periodic disturbances. 
Implementing a joint PI-repetitive control, we were able to keep the reference weight within ±6 
grams (RMS of 3.6 g., about ±1.5% deviation) and to cancel to a large extent the cyclic weight 
variations. Experimental results indicate that the measurement module and the control system 
perform satisfactorily, fitting expected quality requirements. 
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