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SUMMARY 

 A review of different vision systems to recognize fruits for automated harvesting is 

presented. This survey of recent works in this field should be useful to researchers in this 

interesting area. Current research proves the feasibility of practical implementations of these 

computer vision systems for the analysis of agricultural scenes to locate natural objects under 

difficult conditions. Some basic considerations about the distributions and characteristics of 

the fruits in natural orange crops are discussed. 

 The research reported here explores the practical advantages of using a laser-rage 

finder sensor as the main component of a 3-dimensional scanner. This sensor supplies two 

sources of information, the range to the sensed surface and the attenuation occurred in the 

round-trip travel. A model of the attenuation process is presented and used to restore images 

and to derive additional information: reflectance, apparent reflectance, range precision and the 

range standard deviation. The apparent reflectance image and the range image are used to 

recognize the fruit by color and shape analysis algorithms. The information obtained with both 

the methods is merged to find the final fruit position. The 3-dimensional information with its 

precision, the size and the average reflectance of the image is the final information obtained 

for every fruit. This information allows a selective harvesting to improve the quality of the 

final product for the fresh fruit market. 

 Some experimental results are presented showing that approximately 74% of the green 

fruits are detected and this correct location rate is improved as the amount of mature fruits in 

the scene increases, reaching a 100% of correct detection over the visible fruits. No false 

detections were found in the test images used. Future work could be directed to extract more 

shape information from the range image to improve the detection results. The integration of 

the recognition methods with the AGRIBOT harvesting system will be reported in future 

publications.
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ABSTRACT 

 An automatic fruit recognition system and a review of previous fruit detection work 

are reported. The methodology presented is able to recognize spherical fruits in natural 

conditions facing difficult situations: shadows, bright areas, occlusions and overlapping fruits. 

The sensor used is a laser range-finder giving range/attenuation data of the sensed surface. 

The recognition system uses a laser range-finder model and a dual color/shape analysis 

algorithm to locate the fruit. The 3-dimensional position of the fruit, radius and the reflectance 

are obtained after the recognition stages. Results for a set of artificial orange tree images and 

real-time considerations are presented. 

 

KEY WORDS 

Range Images, Shape Recognition, Contour Extraction, Circular Hough Transform, 

Agriculture. 

 

 

INTRODUCTION 

 

Automatic Vision Systems in Agriculture 

 The use of computers to analyze images
 (1)

 has many potential applications for 

automated agricultural tasks. But, the variability of the agricultural objects makes it very 

difficult to adapt the existing industrial algorithms to the agricultural domain. The agricultural 

systems must support this flexibility, and methods for including domain knowledge in 

algorithms should be studied as a rational way to cope with this variability. 

 There are many processes in agriculture where decisions are made based on the 

appearance of the product. Applications for grading the fruit by its quality, size or ripeness are 

based on its appearance, as well as a decision on whether it is healthy or diseased. Humans are 

easily able to perform intensive tasks like harvesting and pruning using basically the visual 

sensory mechanism. This suggests that a system based on a visual sensor should be able to 

emulate the interpretation process of the human visual recognition system. 

 The current areas of image analysis research in agriculture can be classified into two 

main groups: Research tools and Decision-making (Fig.1)
 (2)

. The first group of image analysis 

systems includes applications like plant growth monitoring, morphometry of new cultivars or 

biological cell counts. This type of tool allows a researcher to efficiently gather the data 

automatically. The user monitors the performance of the system and can intervene when the 

system misinterprets an image. These image processing tools also allow features to be 

measured automatically which would be too time-consuming to do manually. The second 

group of image analysis systems must provide information to guide the mechanical 

equipment. Such systems support two different groups of applications, Grading and 

Guidance. The use of image processing for grading is being applied to many products, 

including oranges, potatoes, apples, carrots, green peppers, tomatoes and peaches. The grading 

may be for size and shape, color, or the presence of defects. Current guidance research 

includes harvesting oranges, tomatoes, mushrooms, apples, melons and cucumbers. The 

guidance research also focuses its attention on navigating robot vehicles using machine vision 

strategies or other simple sensors in order to obtain autonomous mobile capabilities. 
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 The techniques used in the above applications are successful under the constrained 

conditions for which they were designed, but the algorithms are not directly usable in other 

applications. In principle, computers are flexible because they can be re-programmed, but in 

practice it is difficult to modify the machine vision algorithms to run for a slightly different 

application because of the assumptions made to achieve robustness and speed for a specific 

application
 (3)

. 

 

Robotic Harvesting 

 The automatic harvesting of citrus has been done entirely by hand and the cost of this 

labor fluctuates around 25%
 (4)

, 30%
 (5)

 and 33%
 (6)

 of the total production costs. So, an 

efficient robotic system could reduce the production costs significantly and this is one of the 

reasons why the use of an automated robotic system for harvesting is so attractive. The other 

reason is to improve the quality of the fruit that would make the product more competitive. 

 The configuration of the trees significantly alters the percentage of visible fruits in the 

tree. For tree row configurations, with a hedge appearance, the visibility of the fruit can reach 

75%-80% of the actual number of fruits
 (4)

, which is much better than the 40%-50% of 

visibility for conventional plantings. So, a reconfiguration of the crops should be considered 

in order to reach the degree of profitability expected when automating a harvesting task. 

 There are several techniques used for the harvesting of fruits which are not appropriate 

for the fresh fruit market due to the damage caused to the fruit during its collection. These 

techniques include the shaking of tree limbs or tree trunks, oscillating forced-air removers and 

the complementary chemical treatment. Fruits are usually bruised when striking limbs during 

the landing. So, there is a need for a non-aggressive method to perform the harvesting of fruits 

as delicately as possible. The manual picking is the most delicate way to perform the 

harvesting, but it is expensive and time consuming. 

 The use of robots to pick tree fruits was first proposed by Schertz and Brown
 (7)

 in a 

review of mechanical citrus harvesting systems. The basic concepts of robotic harvesting were 

established in this paper. One of these concepts was the line-of-sight approach to fruit picking. 

This consists of the following three steps: 1) to visually locate the fruit with an optical sensor, 

2) to guide the fruit detachment device along the line of sight to the fruit, and 3) to actuate the 

device when the fruit is contacted. A robotic system based on the Schertz approach consisting 

of a simple robotic arm, a B/W TV camera and a control computer was built for the harvesting 

of apples
 (8)

. The TV camera was used to locate the fruit attached to an artificial canopy. The 

control computer directed the robot arm along the line-of-sight to the targeted fruit until a 

contact was made by a mechanical whisker. No detachment device was implemented. 

 D’Esnon and Rabatel
 (9)

 presented the first version of the apple picking robot, known 

as MAGALI. The robot consisted of  a hollow tube mounted in a vertical support frame. 

Attached to the end of the tube was a rotating cup end-effector used to detach a fruit from a 

simulated apple tree canopy. The hollow tube could slide in and out, rotate left and right, and 

move up and down the support frame. A B/W camera was attached to the support frame to 

detect the fruit. When the fruit was detected, the tube was aligned with the fruit. The tube 

would extend out until a contact with the fruit was detected by a reflectance sensor in the end-

effector. The cup would rotate behind, cutting the stem and allowing the detached fruit to roll 

down the hollow tube into a collection bin. 

 Other extensive research has been directed at using robots for a variety of agricultural 

harvesting tasks: grapes 
(10)

 
(11)

, asparagus 
(12)

, cucumbers 
(13)

, mushrooms 
(14)

 and apples 
(15)

. 
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Kawamura investigated the harvesting of tomatoes and used a stereoscopic vision system to 

obtain the 3-dimensional location 
(16)

. 

 A second version of the MAGALI robot was constructed in 1986 
(17)

. The new design 

included a spherical manipulator, a camera at the center of the rotation axes and a vacuum 

grasper. MAGALI is a hydraulically actuated vehicle, self-propelled and totally self-guided in 

the pathways by four ultrasonic telemeters. 

 An Italian company, AID Catania, designed and built a prototype of a citrus harvesting 

autonomous robot with a single arm, driven by a vision system which was operated both in the 

laboratory and in the orange grove
 (5)

 
(18)

. This robot has a cylindrical coordinate electrical 

driven arm which supports a goal-oriented smart end-effector. The end-effector is made of a 

mobile helix and a fixed cylinder. An infrared proximity sensor indicates that the orange is at 

the right distance. Approximately 65% of the located fruits were successfully detached. The 

authors also presented their plans to develop a multi-arm robot for automatic picking of 

oranges, but no more references were found about this research. 

 Harrell presents the design of a citrus  picking robot CPR 
(19)

. The robot consists of a 

single arm with a spherical coordinate system whose joints are actuated by servo hydraulic 

drives. The rotating-lip picking mechanism (PM) includes, in a small cavity at the end of the 

arm, a CCD video camera, an ultrasonic ranging transducer to provide distance information to 

objects in front of the PM, light sources and the rotating lip to cut the stem of the fruit. 

 The Japanese company, Kubota 
(20)

 developed a fruit-picking robot which uses a 

mobile platform to approximate a small four degrees-of-freedom manipulator to the 

detachment area. The gripper had a mobile vacuum pad to capture the fruit and to direct it 

towards a cutting device, an optical proximity sensor, a stroboscope light and a color camera, 

with everything protected by a fork-shaped cover. 

 The Spanish-French CITRUS project to harvest oranges, includes an agronomical 

study, the development of a visual system to locate the fruit, the design and control of a 

harvesting arm , the integration of the grasping and cutting device and the field test
 (3)

. There 

are two versions of the robot: one with cylindrical coordinate system and a more sophisticated 

version with spherical coordinates. This second version is the same robot used in the second 

design of the MAGALI fruit harvester. The grasping method used is based on a vacuum 

sucker and to detach the fruit, a spinning movement is used. 

 For the harvesting of apples, the AUFO robot was developed at the Central Enterprise 

for the Organization of Agriculture and Food Industry 
(15)

. This robot was designed to use 6 

arms with a movement in a vertical plane due to the use of only two horizontal axes per arm. 

To sweep the whole volume of the tree, the robot platform is moved around the tree by small 

angular shifts. The position of the apples is computed by a triangulation technique using two 

color cameras. 

 The harvesting of melons was studied and a prototype harvester was constructed to 

selectively harvest these fruits 
(21)

 
(22)

 
(23)

. The system consists of a robot with a Cartesian 

manipulator mounted on a frame moved by a tractor. The robot vision system is used to locate 

the melons and to guide the attaching device toward the fruit. 

 Stepanov presents a review of different robotic systems developed in Russia under 

different projects 
(24)

. The MAVR-1 is an autonomous grape robot, the MOP-1 is a vegetable 

harvesting robot to harvest melons, pumpkins and cabbage and the MIIP-1 is a fruit picking 

robot to collect oranges and apples. 
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 The AGRIBOT is a Spanish project 
(25)

 to harvest fruits with the help of a human 

operator who has the main responsibility of the fruit detection task. The operator using a 

joystick moves a laser pointer until the laser spot is in the middle of the fruit. The 3-

dimensional coordinates are recorded and the parallelogram manipulator is controlled toward 

the fruit. A gripper system based on a pneumatic attaching device and an optical proximity 

sensor is used to detach the fruit. 

 Nowadays, the harvesting of agricultural products is limited to crops which ripen at the 

same time and which do not need individual or delicate treatment 
(26)

. Selective harvesting 

could increase the efficiency of production, and improve the fruit quality. 

 

Fruit Detection Review 

 One major difficulty in developing machinery to selectively harvest fruits is to 

determine the location, size and ripeness of individual fruits. These specifications are needed 

to guide a mechanical arm towards the object. The computer vision strategies used to 

recognize a fruit rely on four basic features which characterize the object: intensity, color, 

shape and texture. In the following paragraphs, a review of different approaches is presented. 

This review is sorted chronologically in order to understand the evolution of research in this 

area. 

 Schertz and Brown suggested that the location of fruits might be accomplished by 

photometric information, specifically by using the light reflectance differences between leaves 

and fruits in the visible or infrared portion of the electromagnetic spectrum
 (7)

. Gaffney 

determined that "Valencia" oranges could be sorted by color using a single wavelength band 

of reflected light at 660 nm 
(27)

. This technique was capable of distinguishing between normal 

orange, light orange and green fruits. 

 The first computer vision system for detecting apples consisted of a B/W camera and 

an optical red filter, and used the intensity data to perform the analysis
 (8)

. In the first step, a 

thresholding is done to obtain a binary image. This binary image is smoothed to eliminate 

noise and irrelevant details in the image. Finally, for each of the segments, the difference 

between the lengths of the horizontal and vertical extrema are computed. So, a roundness 

measure is obtained as well as the centroid and radius values. Then, the density of the region 

is computed by placing a window, whose size is determined by the mean value of the extrema, 

on the centroid. If the density of the region is found to be greater than a preset threshold, the 

region is accepted as an apple.  

 Grand D'Esnon developed a vision system, for the MAGALI robot, to detect apples 

using a color camera 
(17)

. An analog signal processing system was able to select points of a 

given color within the image. But, this vision system required a protective covering to get a 

dark background. In the second version of this system, three color cameras were used with 

different optical filters. A more detailed description of this new version is given by Rabatel 
(28)

. The vision system is based on the analysis of three spectrum bands chosen after a spectro-

photometric study in the visible and close infra-red bands. The three color CCD cameras and 

the three different filters (950, 650 and 550 nm) are used to obtain three intensity images. 

Some ratio features (with reference to the image filtered at 950nm) are used to decide which 

pixels belong to a fruit or to a leaf. After a preliminary study based on the spectral properties 

of the apple tree’s leaves and the apples (Golden Delicious (yellow-green), Red Delicious and 

Granny Smith (green)), it was possible to recognize even the green mature apples. The 

extension of this work to other varieties of apples or fruit trees involves individual spectral 
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studies for each recognition problem. No quantitative data is presented but the authors declare 

that not all the fruits are recognized and there are failures in the detection. Using a similar 

technique, the harvesting of tomatoes with machine vision was investigated by Kawamura 
(29)

. 

 Whitaker presents a system to recognize and locate green tomatoes in a natural setting
 

(6)
. An intensity image with 256 gray levels is used. The analysis is not based on the intensity 

level, but uses shape information. The Circular Hough Transform (CHT) is applied to a binary 

edge and direction images. The results obtained are very sensitive to the user-specified 

threshold value, and the best results for a 99% threshold value are 68% correct detection and 

42% false detection. The contour of the leaves is one of the major problems, since the analysis 

algorithm interprets them as possible fruits. The authors recognized that, at that time, the 

algorithm was computationally intensive on a serial processor and can not be performed in 

real time. 

 The AID robot vision system was implemented to recognize oranges by preprocessing 

the color image with an electronic filter and locating the fruits by recognizing distributions of 

the orientation of maximum gradients
 (5)

. A color camera with an artificial lighting is used. An 

analog electronic filter enhances the image and during digitization, 6 bits are used to codify 

the pixel value which is proportional to the closeness of the actual pixel hue to a preset 

reference hue. With this pseudo-gray image, a gradient image and a direction image are 

computed using the Sobel operator. Finally, the scene interpretation is done through searching 

for a match with an object model previously stored. This gradient direction template is moved 

step by step throughout the direction image. Approximately 70% of the visually recognizable 

fruits were detected. This was one of the first studies that attempted to recognize spherical 

forms in the image, in this case through the orientation of gradients. This technique was also 

used, together with a method of segmentation by region growing and a search for  spherical 

patterns 
(30)

. 

 Slaughter and Harrel 
(31)

 introduced a method to locate mature oranges based on color 

images. This system uses the Hue and Saturation components of each pixel obtained using a 

color camera and artificial lighting. So, there is a two-dimensional feature space and two 

thresholds are employed based on the maximum and minimum values for the saturation and 

the hue components. This leads to a linear classifier that can be displayed as a square region in 

the feature plane. Approximately 75% of the pixels were correctly classified. This algorithm 

(in software) took 2.5 seconds/image and the authors suggested a hardware implementation to 

increase the performance. 

 Sites 
(32)

 presents a system to recognize ripe apples and peaches. This intensity-based 

method uses a B/W camera and color filters (630 to 670 nm) to increase the contrast between 

the fruits and the background. Artificial light is used and most of the images are recorded 

under night operation. The whole method can be divided into five step: 1) thresholding based 

on a constant 37% value, 2) smoothing by a binary filter, 3) segmentation by an 8-neighbor 

connected component labeling, 4) feature extraction (area, perimeter, compactness, 

elongation), and finally 5) classification by a linear decision function or a nearest-neighbor 

method. Classification results around 89%-90% are obtained working at night and for mature 

fruits. During the day, an 84% classification accuracy is declared and at least 20% of false 

detections. Analysis of the preliminary tests resulted in the selection of a 4.5 mm
2
/pixel field 

of view resolution, which was able to provide the necessary geometric details.  

 Slaughter and Harrel 
(33)

 extended their earlier study by using the RGB components 

recorded by a color camera as features and a traditional Bayesian classifier method to segment 

the fruit pixels from the background pixels. So, each pixel has three components (R,G,B) and 
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each of them is classified as belonging to a fruit or to the background. No artificial lighting or 

optical filters are used. The tests show  that 75% of the pixels are correctly classified. Harrel 

et al. 
(34)

 present a method to estimate the size and position of the fruit region which contained 

an initial valid pixel. 

 Texture can also be used to segment objects of interest from the background. Some 

fruits have textures different from their leaves, some are smooth while others are rough. 

Texture analysis has been used and might be a way to locate some specific fruits 
(35)

. 

 The European Eureka Project CITRUS ROBOT, involving both “Instituto Valenciano 

de Investigaciones Agrarias” (Valencia, Spain) and CEMAGREF (Montpellier, France), 

investigated the robotic harvesting of oranges
 (4)

. Several techniques for the vision system 

were developed, but none of them was able to recognize non-mature fruits. Three 

methodologies were used. In the first one, a B/W camera in conjunction with a red filter 

(630nm) and two synchronized flashlights were employed to obtain a uniformly illuminated 

scene which is as much independent as possible of the environmental conditions. With the use 

of a fast thresholding algorithm, 80% of the visible fruits were detected but a high rate of 

failures was found. In the second approach, two B/W cameras instead of one, and two red and 

green filters (630 nm and 560 nm) for each camera were utilized. Computing the ratio 

between the gray levels of both the images, the threshold method works and is independent of 

the luminosity level (the two flashlights are also used here). Approximately 80% of the fruits 

were successfully detected and approximately 10% were false detections. Finally, in the third 

experiment, they used a color camera without artificial illumination. Each pixel with its three 

RGB components is considered a pattern and a Bayesian classifier is used, similar to the 

method presented by Slaughter and Harrel 
(33)

 
(34)

. Success and the failure rates of 

approximately 90% and 5%, respectively, for the visible fruits were reported. Theses results 

were not completely satisfactory since these performance indices are only valid for mature 

fruits and the three vision systems presented do not cope with green oranges. 

 A vision system for the harvesting of melons has been investigated under a close 

collaborative research between the Purdue University (USA) and The Volcani Center (Israel). 

In the first attempt 
(36)

, a B/W camera is used to obtain intensity images of the melon crop. 

The vision technique is divided into two steps. First, there is an analysis step to identify the 

melon and its position and size; this first stage performs an image enhancement, a 

thresholding, a parameter extraction and hypothesis generation. Shape and texture parameters 

in the neighborhood of the hypothesized position are computed to obtain the final candidates. 

The second stage performs a knowledge-directed evaluation using rules which allow to avoid 

noisy detections and to eliminate multiple occurrences. If the second step is not employed, 

approximately 89% of success and relatively high rates of false detections are found, but when 

using the knowledge-based rules, 84% and 10% rates are obtained, respectively. 

 The AUFO project, for the harvesting of apples, includes a stereo vision system that 

uses two color cameras separated by a certain distance and having a converging position 
(15)

. 

Firstly, there is a segmentation of both images based on a threshold value. The regions 

obtained are grouped and the mean position per region obtained. For all the possible pairs of 

segments between both images, the three-dimensional position is computed. The technique 

used to compute the position is a simple triangulation algorithm divided in two steps. The first 

step gives the X-Y position using the projection on the X-Y horizontal plane and the second 

step computes the heights or Z coordinates from each camera viewpoint. If the difference 

between this heights is lower than 40 mm, then an object is considered to be present. Only 

41% of the visual fruits are detected correctly and some false detections appear. 
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 A general vision system for the above melon harvesting problem is presented by 

Dobrousin 
(37)

. The vision system is divided into two subsystems, a far-vision and a near-

vision. The far-vision subsystem uses a B/W camera to locate the X-Y coordinates of the 

melon. The near-vision subsystem uses a B/W camera and a linear laser source to extract the 

distance or Z coordinate, so that a picking arm can be guided. In this work, only the 

methodology used for the far-vision subsystem is shown. Several images are captured in 

different blowing conditions to avoid occlusion of the melons from the leaves. These images 

are filtered, segmented by a histogram-based thresholding, cleaned by a morphological erosion 

operator and finally all the images are integrated by performing a logical OR operation. The 

resulting image is analyzed and some features (shape, area, size) are extracted from each 

segment. Finally, a rule-based classification is applied to obtain the valid fruits. 

Approximately 80% of the melons are detected and these gray level routines have been 

integrated in a real-time pipelined system. The authors also propose the use of infrared images 

to detect the differences of temperature that should exist between the leaves, the soil and the 

melons. 

 Benady and Miles present a description of the near-vision subsystem for the melon 

harvester robot 
(26)

. This system, as explained above, uses a laser line projector to illuminate 

the scene. This line of light when contacting the surface of a melon is recorded as a curved 

line; the deformation of the initial straight line indicates the distance to the object by a 

triangulation analysis. This triangulation system is used to get one profile at every previously 

preset distance gap. These profiles (not contours) are analyzed using the Circular Hough 

Transform (CHT) to obtain a matrix of votes indicating the candidates for being the center of 

a melon. To get the most probable candidates, the distribution of votes around a pixel is used 

instead of the absolute value of votes. For increasing the efficiency of the algorithm, some 

domain specific rules are used. These rules rely on the following parameters: the expected 

size, the shape, the position of the ground, and the height value of the presumed fruit pixels 

that must belong either to the surface of the melon or to leaves covering the fruit. All the fruits 

that were visually discernible were detected by the system, and no false detection occurred. 

 For the purpose of detecting oranges during the initial stages of maturity, a system  

reported by the Spanish-French CITRUS ROBOT project 
(38)

 uses flashlamps and a B/W 

camera to obtain an intensity image of the scene that must have concave surfaces where a fruit 

is present. This approach uses the shape information and not only the intensity levels, like 

previous work, to detect spherical objects. The algorithm can be divided into two steps. The 

first stage computes another image indicating the degree of concavity. The raw image is 

thresholded to consider only those pixels which have certain curvature and thereby reducing 

the computing time required for the next step. The second stage consists of fitting an ellipse to 

the initial image for all the points that passed the threshold. This fitting gives an error index 

indicating the goodness of the fit in two directions, and finally this information is weighted 

and used in conjunction with the thresholded image to obtain the final segmented image. This 

system recognize oranges in the first stages of maturity and results of 75% and 8% of success 

and false detection rates, respectively, are reported. The false detections are mainly due to the 

presence of sky or patches of sky. The processing time per fruit it about 20 seconds and 

around 3 minutes for each scene. 

 A robotic system for greenhouse operation, AGROBOT, was developed at CIRAA in 

Italy 
(39)

. The vision system used for this project is based on a color camera that supplies the 

HSI color components. Hue and Saturation histograms are employed to perform a 

thresholding to segment the image. The 3-dimensional information is obtained by a stereo-
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matching of two different images of the same scene. About 90% of the ripe tomatoes are 

detected and the most frequent errors are due to occlusions. 

 There is a study for the recognition of partial circular shapes which was tested for the 

detection of broken biscuits in sorting applications 
(40)

. In this work also, the technique is 

applied to the recognition of oranges in a tree using a color camera. Since the oranges are 

mature and the leaves are green, the image has enough contrast to apply an edge detection 

procedure and a contour image is obtained. The technique presented can be divided in two 

steps: an initial segmentation of contours obtaining groups of pixels with constant curvature, 

and a second step of contour segment grouping to obtain circle candidates and their 

parameters (radius, center and ratio of visible contour). The method works very well when a 

good contour image is obtained, like in the biscuit application, but there are serious problems 

for the detection of fruits since the contour due to the occlusion of an orange by another 

orange or by a leaf generates false candidates. 

 A major problem in segmenting intensity or gray level images lies in the selection of 

the threshold value that distinguishes an object from the background 
(41)

. This value depends 

on the illumination of the scene and there is no a priori knowledge about it because the 

illumination conditions can vary randomly. For instance, a fruit in the sun appears ten times 

brighter than a leaf in the sun, a fruit in the shade appears four times dimmer than the leaf in 

the sun. 

 Most of the above vision systems give the 2-dimensional position of the fruits. The 

third dimension about fruit location is usually obtained by moving the gripping device 

throughout the line-of-sight until the presence of the fruit is detected. This detection is 

performed using different sensors like touch sensors
 (8)(17)

 or ultrasonic sensors 
(31)

 
(33)

 
(34)

. 

Some approaches use stereoscopic vision to indirectly compute the position of the fruit 
(16)

 
(15)

 
(39)

. The use of a sensor which directly gives the 3-dimensional information reduces the 

computing time required to perform a stereoscopic matching or simplify the task of directing 

the robot arm towards the fruit. In this sense, the only approach using a 3-D measurement 

system was presented for the harvesting of melons 
(26)

, but it was necessary to use a traditional 

camera-based stage to obtain the X-Y coordinates due to the small field of view of the 3-D 

sensor. 

 

OBJECTIVES 

 The main objective of this research is to develop an image analysis system capable of 

locating near-spherical fruits (oranges, apples, peaches) in natural tree scenes while meeting 

the following requirements: 

1) The system should be able to recognize and locate both ripe and close-to-leaf-color fruits 

(green fruits). 

2) The method should be applicable in situations where certain areas of the fruit are not 

visible due to partial occlusion by leaves or by overlapping fruits. 

3) The system should be robust enough for operating in the presence of difficult conditions 

like bright sun reflections, shadows, variable lighting conditions, night operation and 

small noisy patches of sky in the background. 

4) The system output must supply the 3-dimensional position, the approximate size of the 

fruit and an index indicating the degree of ripeness of the fruit. This information allows a 

robot harvester to perform selective harvesting. 
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5) The algorithms must operate in real-time on a general purpose sequential processor with 

the support of special image processing boards. A processing time of 1 second per fruit is 

considered to be acceptable. 

 

METHODOLOGY 

 A general data flow of the fruit recognition system is given in Figure 2. The natural 

scene is sensed and digitized by a three-dimensional scanner. This sensor which will be 

described in the next section, gives the spherical coordinates of each scene point as well as a 

value indicating the attenuation of the laser energy due mainly to the distance, the surface type 

and orientation of the sensed surface. So, for each full scan, four digital images are obtained. 

Two images represent the azimuth and elevation angles (AZ(x,y) and EL(x,y)), the distance or 

range is included in RANG(x,y) and the attenuation is in ATTE(x,y). As can be seen, no natural 

lighting shadows appear since an active sensor is used and the laser beam is, in this case, the 

light source. 

 After the above image extraction, an image processing and generation process is 

carried out. An image enhancement technique is applied to the RANG(x,y) and ATTE(x,y) to 

increase the quality of these images. But the most interesting aspect is based on the sensor 

model previously computed using a set of different kinds of surfaces at different distances and 

orientations. This model allows us to know the reflectance of the surface, which only depends 

on the type of surface, but not on the distance and orientation of the sensor with respect to the 

sensed objects. So, the reflectance image REFL(x,y) theoretically give us an image whose 

pixel values depend only on the energy absorbing ability of the object surface. This image 

could be used as an ideal one, but the need for computing the surface normal with high 

precision at each pixel, leads to a noisy image when non-soft surfaces are present. 

 The same model permits to obtain another image AREF(x,y) (apparent reflectance), 

which does not require the estimation of the surface normal. This image is similar to an 

intensity image obtained with a TV-camera using a red filter and also utilizing a high power 

lighting system placed along the axis of the camera. But, our AREF(x,y) image has an 

advantage over the former image; based on the scene knowledge, distances to valid sensed 

points are known, and so high value pixels can be rejected if they are outside this range. With 

this knowledge-based image transformation, AREF(x,y) is not perturbed by patches of sky, 

objects far away or points belonging to the soil. So, the AREF(x,y) image can only be 

compared with images obtained after a classification has been done to distinguish between the 

objects and the background, using color TV-cameras and artificial illumination. Finally, we 

can conclude that the AREF(x,y) image has a quality at least as good as the best TV-images 

which we have been able to obtain. 

 The image analysis process uses three input images RANG(x,y), ATTE(x,y) and 

REFL(x,y) to detect the position of the fruit (Pos(x,y)), its approximate radius (Rad), the 

distance from the origin of the 3-D scanner to the center of the fruit (Dist), and the mean 

reflectance (Refl) of that fruit than can be used to determine its degree of ripeness. 

 This information allows us to perform a selective harvesting based on the size and the 

ripeness of the fruits. So, only the desired type of fruit is selected to be detached. The final 

information supplied to the AGRIBOT robot control system is the (X,Y,Z) Cartesian 

coordinates of the center of the fruit and the localization accuracy expected. 

 

The 3-D Sensor. 
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 The 3-D sensor consists of a point laser range-finder and a tilt/pan mechanism to direct 

the laser for scanning the desired area of the scene. The range sensor is commercially 

available from a German company, SICK Optic Electronic (DME 2000). The sensor is based 

on the principle of phase shift between emitted and returned amplitude modulated laser signal. 

Following are some of the main technical features of this sensor: 

• Resolution:  1mm 

• Consistency:  1mm to 25mm (depends on the target reflectance) 

• Accuracy:   ±5mm to ±65mm (depends on the target reflectance) 

• Max. measuring range: 2047 mm (Configured to measure from 600 mm to 2647mm) 

• Wavelength:  670 nm (red color) 

• Laser class:  2 

• Measuring rate:  29 ms (100 ms when also measuring the attenuation) 

• Light spot size:  3 mm (measuring distance 2m) 

 The scanner mechanism is programmable to allow to select the desired area of the 

scene to be scanned and the spatial resolution needed. The spatial resolution varies from the 

center of the image to the boundary, since the angular resolution is constant. This fact doesn’t 

deform the shape of the fruits due to the symmetric shape of these spherical objects. So, there 

is no need for any type of correction before processing the captured image. The spatial 

resolution used in the set of images recorded for this study ranges between 1.5mm/pixel to 

3mm/pixel. A spatial resolution of 3mm/pixel is appropriate to have a detailed information 

about the objects shape. 

 The sensor supplies several digital and analog signals, but two of them are the most 

useful: the range to the sensed surface and the signal attenuation. Some range and attenuation 

images are shown in figure 3, and the intensity image of the same scene obtained with a 

photographic camera is also displayed for comparison. The size of these images are 100 by 

100, and the time required to capture them is around 1000 seconds since the measurement 

time is 100 ms. The slow scanning speed is not admissible in a practical application and a 

faster sensor must be used for a practical recognition system. 

 The range and attenuation signals can be used to derive additional information about 

the scene based on the model of the laser range-finder. This model allows us to obtain the 

reflectance, the appearance reflectance, the precision and the standard deviation of the 

digitized pixel. A more detailed description of the sensor model is given in Appendix A. 

Using a visible red laser wavelength, like in the present work where we use a 670 nm laser, 

there is a contrast between green/blue surfaces and red/yellow/orange/white objects. This fact 

is interesting when a color analysis algorithm is employed, since the objects belonging to the 

second group of colors are easily separated from a green/blue background. Also, the 

sensitivity of the sensor when the color surface changes from green to red, gives a good clue 

to deduce the degree of ripeness. These reasons suggest the use of a red laser source instead of 

an infrared or green laser. But, if only the shape of the scene is going to be analyzed to 

recognize the objects, the infrared telemeter versions are preferred since the attenuation is 

lower and it is independent of the surface color and therefore the accuracy of the range data is 

good throughout the whole image. 

 

Image Processing and Image Generation. 

 This stage of processing has two basic goals: the generation of new images for an 

easier analysis and the restoration of these images. Figure 4 shows a detailed diagram 
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indicating the flow of information and the transformation process. Most of the algorithms are 

based on the model of the laser range-finder illustrated in Appendix A. 

 The range image is almost noise-free when the attenuation of the image is low, or in 

other words, if the scene surfaces have a good reflectance. Since this property is modeled by a 

function relating the attenuation of the signal with the standard deviation of the range 

measurement, an adaptive approach can be implemented to change the restoration coefficients 

as the attenuation for each pixel of the image varies. This technique is able to remove outliers, 

smooth surfaces and preserve jump boundaries. The knowledge of the standard deviation 

expected for the neighborhood of each pixel and the difference with the actual value give us 

the information required to take the most appropriate restoration decision. 

 The model of the precision of the range measurement and the reflectance as a function 

of the attenuation allow us to generate two new images which will be used in future 

processing steps to obtain the position precision of the fruit and to determine the reflectance of 

the fruit which indicates the ripeness of the fruit. 

 The apparent reflectance image is computed based on the apparent reflectance model 

and some domain specific knowledge which give us the necessary support to eliminate bright 

areas that are not created by a fruit or that are outside the working volume of the robot 

manipulator. This image is finally smoothed by a low-pass filter accomplishing a good quality 

image. The final apparent reflectance image is much better than the intensity images obtained 

using a red optical filter and a B/W camera, since no strange bright areas appear and there is 

no need of artificial illumination due to the active property of the laser sensor. 

 

Image Analysis Approach 

 This image analysis approach is characterized by the use of two different images of the 

same scene: AREF(x,y) and RANG(x,y). These pictures were obtained with the same sensor, so 

a direct pixel-to-pixel correspondence exists between both images allowing an easier 

integration of the individual analysis results. For each of these images, a different analysis 

algorithm (color and shape) is applied and finally a high-level integration is performed in 

order to take into account both the results. A scene-based knowledge is incorporated to reduce 

the computing time required by the algorithms and to make the analysis task more robust and 

immune to noisy disturbances. This information includes the expected fruit radius interval 

(30-50mm), the expected distance to the fruits (1-2.5m), the maximum predicted reflectance 

value of the tree leaves (0.3 for perpendicular incidence) and the angular resolution of the 

processed image. 

 The apparent reflectance image, AREF(x,y), is segmented by thresholding at a preset 

value based on the scene knowledge, so the background pixels are set to zero. The remaining 

non-zero values are clustered by a labeling procedure based on the Euclidean distance 

between pairs of pixels. During this stage, the maximum apparent reflectance (minimum 

distance error) of each cluster is used to compute the distance to the closest point of the fruit. 

The reflectance image is employed to average the clustered pixels, obtaining an approximate 

estimate of the reflectance of the object surface, which can be used to know the ripeness of the 

fruit. The position and radius estimation is based on the extrema position values in the vertical 

and horizontal directions inside the cluster. The detected clusters without a minimum number 

of pixels belonging to it are rejected as valid fruit in order to eliminate the possibility of 

random small areas of a highly reflective non-fruit object. Since the size supplied by the 

former method tends to be smaller than the real size, a range image-based exploration is done 
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starting from the previously computed radius value. Once the final radius is calculated, this 

value is added to the previous distance to the fruit’s surface to obtain the distance to the fruit 

center. Finally, a rule-based rejection algorithm is applied to reduce the chance of false 

detection. This rule is based on the range image and states that no pixels can be found inside 

the area of the candidate fruit, with range values greater than the estimated distance to the fruit 

center. If some candidate violates this rule then it is not considered a fruit candidate anymore. 

 The previous algorithm based on the apparent reflectance image and also on the range 

image which refines the results, basically only detects mature fruits. Such fruits are 

characterized by an apparent reflectance of 0.3 or higher. This method is not time consuming 

and allows a quick detection of the three-dimensional fruit position, its size and the ripeness 

of the fruit based on the reflectance value. 

 A more time-consuming method is based on the shape of the fruits detected in the 

range image (RANG(x,y)). A special pseudo-edge detection algorithm is applied to detect steep 

slopes corresponding to proximity regions to the boundaries of the fruit, but rejecting the step 

boundaries which mainly belong to leaf-to-leaf transitions. Basically, a gradient map and a 

direction map are computed, but instead of thresholding the image looking for the highest 

values of the gradient, a sandwich thresholding is used based on the values whose selection is 

explained in appendix B. This edge extraction method gives a set of pixels which is employed 

to perform a specially designed Circular Hough Transform (CHT). 

 The Hough Transform is a well-known method for extracting shape information from 

edge images 
(42)

 
(43)

 
(44)

 
(45)

 
(46)

. The circular version identifies the center and radius of probable 

arcs or circular edges. The use of the edge image as well as the direction of the gradient allows 

us to perform this transform more efficiently in time and more robustly against false 

detections. One of the major problems of this method is the selection of the threshold value to 

distinguish between a good candidate to be a circle center and an insufficiently voted 

candidate. We select the highest voted pixels until a 1% percentage of the total pixels is 

reached, and a later clustering technique groups the votes to highlight the stronger candidates 

whose votes could have been spread over a certain area due to the non-perfect spherical shape 

of the fruits. This spreading of the votes due to the imperfect shape of the fruits could cause a 

high density of pixels with medium votes but none of them with enough value to be 

considered a valid candidate after the thresholding. If a low enough threshold value is chosen, 

the medium voted pixels are considered, and if a posterior clustering technique is applied 

summing all the votes for each pixel inside a cluster, the imperfect spherical shape of the 

fruits is overcome and a robust system is obtained. 

 This CHT not only manages a matrix of accumulators or matrix of votes, it also 

accumulates, for each pixel in the image, the average distance and reflectance of the 

surrounding pixels which vote for each pixel. This information allows a quick computation of 

the distance to the center of the fruit and an estimation of the reflectance of the surface of the 

object which will be used to calculate the ripeness. Appendix C shows some corrections to the 

distance to the center of the fruit, which are needed, due to the special features of the edge 

extraction stage, in order to obtain more accuracy in the distance measurements. 

 The clustering algorithm is similar to the one used in the processing of the apparent 

reflectance image, but is adapted to manage several images of votes for each radius tested and 

the distance and reflectance vote matrix. In this clustering process, the final radius, distance 

and reflectance are estimated taking into account the pixels belonging to each cluster. Clusters 

without a sufficient number of votes are rejected to eliminate the appearance of random 
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clusters because of the low initial threshold values. Finally, as in the color analysis process, 

the same rule-based rejection algorithm is applied to reduce the chance of false detections. 

 The results obtained by the color and shape analysis methods are integrated in order to 

obtain a final result with the contributions of both methods, resulting in a higher amount of 

correct detections, but without spurious detections produced when the same fruit is recognized 

by both the methodologies. In this case the position, radius and distance information provided 

by shape analysis is considered more precise and the reflectance is supplied by the result 

obtained from the color analysis method. 

 Figure 6 shows some intermediate images, for two tree scenes, obtained using color 

(left side) and shape (right side) analysis. The four images displayed for the color analysis are 

from top to bottom: the AREF(x,y) image, the thresholded image, the result of clustering and 

the detected fruits overlaid on the AREF(x,y) image. The five images displayed for the shape 

analysis are from top to bottom: RANG(x,y) image, a binary version of the gradient image after 

the two-limit thresholding, the matrix of votes for one of the radius tested, the matrix of votes 

after the clustering and the detected fruits overlaid on the RANG(x,y) image. The objects 

detected are integrated and superimposed over the photographic version of the tree scene. 

Some position shifts occur due to the non-perfect pixel-to-pixel correspondence between these 

images that were recorded with different sensors and from slightly distinct observation angles. 

 Both the images in figure 6 include four fruits. In the left image the citrus are mature 

and in the right image the citrus are green. Since the color of the images in the right scene is 

green, the color analysis did not detect any fruit, but we can notice the existence of some 

specular reflection in the middle of the fruit that is finally rejected because of the small size of 

the clusters. Three fruits are found in the right scene with the shape analysis, so one fruit is not 

detected. Looking at the vote image after the clustering, four candidates are present but one of 

them is a false detection, but fortunately the rule-based rejection step eliminates the false 

detection. 

 

RESULTS AND DISCUSSION 

Experimental Results 

 A set of 15 images were captured by scanning an artificial orange tree, containing a 

total of 38 oranges. This test set of images is not exhaustive considering the number of fruits, 

but contains the most typical configurations of occlusion and overlapping that are frequently 

found in a real fruit scene. The test set includes about 58% of mature fruits and about 42% of 

green oranges. 

 The color analysis method is able to recognize everyone of the mature fruits but 

obviously none of the green fruits are detected due to their similarity with the color of the tree 

leaves. False detections, possibly appearing because of the presence of bright objects, 

branches or background, are not found showing the robustness supplied by the AREF(x,y) 

image and the rejection stages (size-clustering-based and rule-based rejections). 

 The shape analysis method recognizes mature fruits as well as green fruits, but 

presents difficulties for detecting the fruit when less than 30% of its contour is not visible. 

This fact leads to some error in detection of the fruits, but like in the color method, no false 

detections are found due to the robustness supplied by the rejection stages. Table 2 shows the 

detection results. The overall classification results show that approximately 87% of the visible 

fruits (to a human) are detected and no false detections were found. These results do not mean 
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that the system is free of false detections; some false detections could occur under certain 

circumstances but its probability is very low. The recognition system performance (in our 

case, 87%) varies with the percentage of green fruits; the overall correct detection results 

ranges from 74% for a set of only green fruits to 100% for orange, red or yellow color fruits. 

 A specular reflection is detected in the center of the fruit even for the green variety. 

This information could be used to increase the performance of the system (some tests indicate 

90% for only green fruits) but it imposes some constraints about the fruit surface or skin to be 

detected and reduces the general spherical object applicability to only shiny spherical objects. 

For this reason, the specular information was not taken into account in the recognition stages. 

 

Real-Time Considerations 

 The algorithms have been executed on a Pentium-90Mhz processor without special 

image processing hardware. The software was written in Matlab code and the Matlab 

interpreter was used to execute the algorithms spending an average of 10 seconds to recognize 

each fruit. The software was not compiled to generate a faster code, so the timings reported 

can be improved to cope with the requirements of a real-time application. An average 

processing time of 1 second/fruit is expected using compiled programs and an image 

processing board. 

 The use of the color and shape analysis proceeds as two sequential stages instead of 

two parallel stages. An additional step to remove the objects detected by the color stage, can 

improve the speed of detection since the input image to the shape analysis becomes simpler. 

The shape analysis is approximately 10 times slower than the color analysis, and its 

processing time depends on the number of edge pixels in the input image forwarded to the 

Circular Hough Transfrom process. The complexity of the CHT is proportional to the number 

of edge pixels. This sequential configuration can lead to a system with reduced processing 

times for images with mature fruits. 

 

Future Work 

 Future work should be focused on the improvement of the shape recognition stage so 

that it is able to detect more number of spherical objects. This way, the overall location 

performance wouldn’t depend on the maturity stage of the fruit. To fulfill this requirement, the 

range image should not only be analyzed by its contour shape, but by profile shape or by the 

curvature of the surfaces. This additional analysis could improve the correct detection rates to 

a hypothetical maximum limit of 95% of the visible fruits, but its real-time achievement 

should be studied. 

 The compiled version of the recognition and location system will have to be integrated 

in the AGRIBOT robot to allow the system to locate fruits in an automatic mode. As it was 

explained, this system was originally designed to locate the fruits manually. Now, the system 

could work automatically and only the non-detected fruits could be pointed manually if the 

additional labor costs, due to the manual operation, are considered advisable. 

 There is a need for performing a ripeness study to correlate the reflectance information 

obtained for each fruit with its ripeness. This study should supply a set of tables or functions, 

one for each type of fruit or variety considered, relating the reflectance value with the ripe 

classification. 
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APPENDIX 

Appendix A: The Laser Range-Finder Model 

 The main goal of this section is to derive a mathematical expression which is able to 

model the behavior of the laser range-finder when the operational conditions change. The 

attenuation signal supplied by the sensor must depend on the distance r to the object, the 

reflectance properties of the target surface and the angle θ between the laser optical axis and 

the normal to the target surface. 

 Let ρd denote the diffuse reflectance coefficient which is the ratio between the 

reflected diffuse radiant flux and the incident radiant flux Fi (3.4*10
-3 

 w ). The values of this 

coefficient ranges from 0 for a black surface to 1 for an ideal white surface. ρd depends on the 

wavelength of the light, but in our case a fixed wavelength, 670nm, will be utilized. 

 The diffuse reflected radiant intensity Id (w/srad) depends on the incident radiant flux 

Fi, the diffuse reflectance coefficient ρd , and the incident angle θ. Using the cosine Lambert 

Law, the following expression is found: 

Id =
Fi

dπ
ρ θcos      (1) 

 The fraction of the received laser signal which passes throughout the optical system of 

the sensor is denoted by α. The α value range from 0 to 1 for ideal optics. Theoretically, this 

value must be a constant, but for our sensor the transmission rate changes when the distance to 

the sensor varies. 

( ) ( )[ ]α r a atan a r= 1 2

2

     (2) 

 The area of the optical surface for the signal reception is represented by Ar (908 mm
2
). 

The solid angle Ω captured by the sensor is equal to AR/r
2
 . The radiant flux captured by the 

laser range-finder is a function of Id , r and Ω . The following equation expresses this 

relationship: 
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 Finally, Atte, the signal supplied by the sensor on a decibel unit scale, can be modeled 

in the following way: 
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 This model is directly employed to obtain the following equation to compute the 

diffuse reflectance coefficient. 
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 To compute the reflectance coefficient, it is necessary to know the distance r , the 

signal attenuation Atte, and the angle θ. The first two parameters are obtained directly by the 

sensor, but for computing θ there is a need for analyzing the range image and produce a 

surface normal image. Due to error in computing surface normals, we obtain noisy reflectance 

images. 

 If the term related to θ is placed on the left side of the equation (6), the apparent 

reflectance is obtained, which is much easier to calculate.  
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 In a previous work 
(47)

, the following dependencies between the signal to noise ratio, 

SNR, and the captured radiant flux, Fc,, are exhibited. 
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 where: 

h = Planck constant. 

c = speed of light = 3*10
8
 m/seg 

λ = Laser beam wavelength = 0.67 µm 

η = Photocatode quantic efficiency. 

 Taking into account that the standard deviation and the precision of the range 

measurements are inversely proportional to the SNR, the next two expressions allow us to 

estimate these parameters. 

( ) ( )
σr

Aten= ⋅ +−145 10 10 0 55 0 054. ..
    (9) 

( ) ( )Pr .
.

ecision
Aten= ⋅ +−138 10 10 86 0 062

   (10) 

 

Appendix B: The maximum and minimum gradients for edge extraction. 

 Two values are calculated to perform the thresholding of the gradient image obtained 

by applying a Sobel operator. The goal is to obtain a set of pixels belonging to the boundaries 

of the spherical object. This set of pixels will be used to perform the CHT, but to reduce the 

possibility of error, only the pixels within a certain surface slope interval are considered. The 

pixels with slopes higher than a maximum value are not considered since these abrupt 

transitions could be due to leave-to-leave jumps. Pixels with slopes below the minimum value 

are also not taken into account. The two threshold values are computed so that a two-pixel-
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wide ring is always obtained when spherical objects exist. The outermost pixel of the contour 

of the sphere is not considered for getting rid of the step edge which could be a source of 

undesired edges. 

If N is the number of pixels existing in the radius of a sphere, then we obtain the following 

relationship: y N x= −2 2 for a spherical object. To obtain the slope function,  y is derived 

with respect to x obtaining: 

dy

dx

x

N x
=

−

−2 2
     (11) 

And the gradients for the pixels N-1 and N-3 are: 
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Appendix C: Distance to the object correction when using the CHT. 

 Appendix B describes the selection of the two threshold values to obtain the edge 

image. Since we are not using the real boundary of the spherical object, the computation of the 

distance to the center of the object d is equal to d’ (distance computed using the CHT) plus an 

error e. If dα is the angular resolution of the image and N is the number of pixels in the radius 

of the sphere which it is being searched by the CHT, then we can deduce the following 

relations (see figure 9): 

d’=r*cos(dα*(N-2))   d’ is the distance without correction (14) 

( )e N N d r= - ( - )2 22 ∗ ∗α   e is the error produced   (15) 

Finally, the corrected distance is computed by the following expression: 

( )( ) ( )d d e r d N N N d r= ' + = -  + - ( - )∗ ∗ ∗ ∗cos α α2 22 2    (16) 
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Figure 1.  Image Analysis Applications in Agriculture 
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Figure 2. General Data Flow Diagram of the fruit detection process 
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      Photograph of the scene Range images    Attenuation images

 

Figure 3. Some examples of range and attenuation images for two different artificial orange 

tree scenes. At the top, from left to right: scene with 4 mature oranges; the range image and 

the attenuation image. At the bottom, another sequence for a scene with 4 green oranges. 
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Figure 4. Data flow diagram of the image processing and image generation process. At the top 

are actual input images (RANG(x,y), ATTE(x,y)) and at the bottom, the output images 

(PREC(x,y), RANG’(x,y), AREF(x,y), REFL(x,y)). 
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Figure 5. Data flow diagram of the dual image analysis approach. The left side represents the 

color analysis and the right side represents the shape analysis. 
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Figure 6. Some intermediate images during the image analysis process. At the top-left and 

top-right, two photographs are shown. Each of these images is processed by the color and 

shape analysis and the final results are displayed by overlapping circumferences with the 

computed radius. 
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Figure 7. The angle θ between the surface normal and the laser axis is necesary to obtain the 

reflectance of the surface. 
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Figure 8. The two slope limits depicted, produce a two-bit-wide edge ring when a sphere is 

present. 
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Figure 9. Drawing showing the parameters related in the correction of the distance to the 

center of the spherical fruit. 

 

 



 31

 
Research 

reference 

Type of fruit Sensor and 

accessories 
1
 

Detection method applied 
2
 Detects 

green 

fruit 

Success / False 

detection rates 
3
 

[8] Apples B/W+F Intensity (Thr+FE+RC) No N.R. 

[17] Apples Color Color (Thr) No N.R. 

[17] [28] Apples 3 Color+3 F Color (Ratio+Thr) Yes 50% / ≠0% 

[6] Tomatoes B/W Shape (Edge+CHT) Yes 68% / 42% 

[5] Oranges Color+F+L Shape (Gradient+Matching) No 70% / N.R. 

[31] Oranges Color+L Color (Hue&Sat+LC) No 75% / N.R. 

[32] Apples and 

Peaches 

B/W+F+L Intensity (Thr+FE+LC) No 84% /20% 

[33] [34] Oranges Color Color (RGB+BC) No 75% / N.R. 

[4] Oranges B/W+F+2L Intensity (Thr) No 80% / High% 

[4] Oranges 2 B/W+2F+2L Intensity (Ratio+Thr) No 80% / 10% 

[4] Oranges Color Color (RGB+BC) No 90% / 3-5% 

[36] Melons B/W Intensity (Thr+FE+RC) No 84% / 10% 

[15] Apples 2Color Color(Thr+Stereo) No 41% / N.R. 

[37] Melons B/W+Blower Intensity (Thr+FE+RC) No 80% / N.R.% 

[21] Melons Laser&B/W+ 

Blower 

Shape (Profile+CHT+RC) Yes 100% / 0% 

[38] Oranges B/W+L Shape (Concv+Thr&Fitting) Yes 75% / 8% 

[39] Tomatoes Color Color (Hue&Sat+Thr) No 90% / N.R% 

1
(B/W=Black/White camera, Color=Color camera, F=Filter, L=Artificial lighting) 

2
(Thr=Thresholding, FE=Feature extraction, LC=Linear classifier, BC=Bayesian classifier, RC=Rule-based 

classifier, RGB=Red-Green-Blue feature space, Hue&Sat=Hue-Saturation feature space, CHT=Circular 

Hough Transform, Gradient=Gradient image, Concav=Concavity image, Profile=Profile image) 

3
(N.R.=Not Reported) 

Table 1. Summary of the most important vision systems for agricultural harvesting. No food 

inspection systems are included. 
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Analysis method Partial success / failure rate Final success / failure rate 

Color 58% / 0%  

Shape 74% / 0%  

Table 2. Recognition results for the test set of mature and green oranges with different 

degrees of occlusion. 

 

 

87% / 0% 


