
SoftwareX 19 (2022) 101186

T
a

b

c

d

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

GetSensorData: An extensible Android-based application for
multi-sensor data registration
Juan D. Gutiérrez a,∗, Antonio R. Jiménez b, Fernando Seco b, Fernando J. Álvarez a,
eodoro Aguilera a, Joaquín Torres-Sospedra c, Fran Melchor d

Sensory Systems Research Group (GISS). Universidad de Extremadura, Av. de Elvas s/n, 06006 Badajoz, Spain
Center for Automation and Robotics, CSIC-UPM Ctra. Campo Real km 0.2, 28500 Arganda del Rey, Spain
Centro ALGORITMI, Universidade do Minho, Alameda da Universidade, 4800-058 Guimarães, Portugal
Quercus Research Group, Universidad de Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain

a r t i c l e i n f o

Article history:
Received 3 May 2022
Received in revised form 23 July 2022
Accepted 29 July 2022

Keywords:
Sensing technologies
Mobile applications
Android

a b s t r a c t

Smartphones are powerful tools with extensive sensorization that can provide useful information in
research or everyday life applications. This information can be obtained from the device’s built-in
sensors or through other external sensors connected physically via USB or wirelessly via Bluetooth
or WiFi. This paper presents the GetSensorData application that provides an open-source, flexible
and extensible framework for registering sensor data from Android devices. The application uses
standard formatting and synchronization, easing interoperability with other software. End developers
(particularly those involved in research) can save the effort and time of creating their sensor acquisition
applications and fully concentrate on the higher-level data processing tasks. The application has been
used and successfully evaluated for six years by various research groups in different activities related
to their work areas. Some examples are the calibration of positioning systems in competitions held at
conferences, modeling wireless signal path loss propagation in indoor environments or data collection
for unsupervised learning algorithms.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 2.3.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00113
Code Ocean compute capsule
Legal Code License GNU General Public License v3.0
Code versioning system used Git
Software code languages, tools, and services used Java, Kotlin
Compilation requirements, operating environments & dependencies Android Studio 2021.1.1 Patch 3, Android 5.0 (Lollipop, API 21)
If available Link to developer documentation/manual https://gitlab.com/getsensordatasuite/getsensordata_documentation
Support email for questions lopsi.csic@gmail.com

Software metadata

Current software version 2.3.1
Permanent link to executables of this version https://gitlab.com/getsensordatasuite/getsensordata_android/-

/blob/master/Releases/GetSensorData-2.3.1.apk
Legal Software License GNU General Public License v3.0
Computing platforms/Operating Systems Android 5.0 (Lollipop, API 21)
Installation requirements & dependencies
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://gitlab.com/getsensordatasuite/getsensordata_documentation

Support email for questions lopsi.csic@gmail.com

∗ Corresponding author.
E-mail address: andy@unex.es (Juan D. Gutiérrez).
ttps://doi.org/10.1016/j.softx.2022.101186
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2022.101186
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101186&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00113
https://gitlab.com/getsensordatasuite/getsensordata_documentation
mailto:lopsi.csic@gmail.com
https://gitlab.com/getsensordatasuite/getsensordata_android/-/blob/master/Releases/GetSensorData-2.3.1.apk
https://gitlab.com/getsensordatasuite/getsensordata_android/-/blob/master/Releases/GetSensorData-2.3.1.apk
https://gitlab.com/getsensordatasuite/getsensordata_documentation
mailto:lopsi.csic@gmail.com
mailto:andy@unex.es
https://doi.org/10.1016/j.softx.2022.101186
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

1

t
i
e
o
p
o
c
f
I
f
a
i
a
a
s
i
a

s
t
D
f
d
s
o
a
s

m
c

s

Fig. 1. Proposed solution for the use of smartphones as research tools.

. Motivation and significance

The processing capabilities of modern smartphones allow real-
ime recording of multiple sensory data streams from their built-
n and externally connected sensors. This processing capacity
nables more complex applications such as improved indoor and
utdoor positioning. However, each research group acquires, pre-
rocesses and stores sensor data in the way that better suits their
bjectives. This lack of consistency in format makes it difficult to
ompare results and share data, and also weakens the capacity
or joint efforts between researchers from different groups [1,2].
n research works, the method for acquiring raw sensor data, its
ormatting or pre-processing, as well as the data itself, are not
lways shared. Fortunately, this trend is changing, and currently,
t is easier to find datasets and supporting material shared by
uthors [3,4]. Even though there are software tools to develop
pplications for portable devices, the creation and integration of
uch modules can be a daunting task for non-experts, spend-
ng time and resources to develop applications for sensory data
cquisition.
There are a wide variety of applications to capture and save

ensory data on Android devices. The following is a selection of
he most relevant applications with these functionalities. Sensor
ata.1 is the top result in the Android App Store when looking
or sensor data applications, with more than a hundred thousand
ownloads. This application can capture data from the built-in
ensors of an Android device for later analysis. Although it is
ffered for free, some of its features are locked behind an in-
pp purchase, and its source code is not available. With a similar
et of features, Sensor Data Logger2 also offers its source code.
Unfortunately, this application has not been updated for years,
which may result in the application ceasing to work as proper
support is not provided. Finally, OpenCamera Sensors3 shows
ore activity than the previous two ones and also offers its source
ode. However, the number of available sensors is limited to the

1 https://play.google.com/store/apps/details?id=com.matlabgeeks.gaitanalyzer
2 https://play.google.com/store/apps/details?id=net.steppschuh.

ensordatalogger
3 https://github.com/MobileRoboticsSkoltech/OpenCamera-Sensors

camera and Inertial Measurement Units (IMUs) In this case, the
actual camera acts as the primary sensor while the rest of the
sensory data are added to the captured images. Unfortunately,
none of these applications allows the use of external sensors.
More importantly, none offer a modular architecture that allows
researchers to add their sensors, either internal ones not sup-
ported by the application or external ones connected by cable
or wirelessly. The ideal application for collecting sensory data
should be updated frequently and be compatible with a wide
range of devices. Its code should be open-sourced so that it can be
modified and audited. A qualified developer team should back its
maintenance. It should work with built-in and external sensors,
be easily extensible, and be freely available.

This paper introduces GetSensorData, an Android application
focused on sensory data acquisition. The data can be displayed
in real-time on the device screen, or saved for later analysis,
creating a de-facto standard format. The application is open-
source, and its development is community-driven via Git pull
requests. Its architecture is designed to foster collaboration, en-
couraging others to include the sensory software needed in the
application and making it available for the research community.
GetSensorData features a modular and extensible class hierarchy
for sensor management, and it is accompanied by a suite of tools
to perform tasks such as parsing or visualization of acquired data
in a personal computer. A diagram describing the benefits of this
application is depicted in Fig. 1.

The application was initially conceived to help in the devel-
opment and evaluation of positioning algorithms. It has readily
been used in different indoor positioning competitions since the
2016 International Conference on Indoor Positioning and Navi-
gation (IPIN) [2,5–7]. For this purpose, a specific Graphical User
Interface (GUI) to accurately geo-reference and calibrate indoor
maps has been included in the GetSensorData suite. This tool also
assists in defining Ground-Truth (GT) trajectories as a sequence
of reference points on the map. Starting with the first version
of GetSensorData, the application has been tested and used by
many scientific groups to improve their positioning algorithms.
However, GetSensorData is not constrained to localization tasks:
researchers interested in harvesting information from sensory
data can use and expand the application to cover their own needs.
2

https://play.google.com/store/apps/details?id=com.matlabgeeks.gaitanalyzer
https://play.google.com/store/apps/details?id=net.steppschuh.sensordatalogger
https://play.google.com/store/apps/details?id=net.steppschuh.sensordatalogger
https://github.com/MobileRoboticsSkoltech/OpenCamera-Sensors

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

t
d
t
i
w
c

2

d
i
f
a
t
c
s
t
b
L

s
t
a
A
m
p
5
9

c

d

Fig. 2. Different smartphone sensors and possible application of the data acquired from them.

The rest of this article is organized as follows. In Section 2,
he application architecture and functionality are introduced. A
emonstration of the software capabilities is presented in Sec-
ion 3. Section 4 highlights the benefits of using and extend-
ng the application. Finally, in Section 5, conclusions and future
orks derived from the application are extracted. Additionally,
ommented code snippets can be found in Appendix A.

. Software description

GetSensorData is an Android application capable of showing
ata from the different sensors available in a smartphone on
ts main screen, as depicted in Fig. 2. Besides, data acquired
rom the sensors can also be permanently stored in a file using
standard format. Marks with timestamps can be included in

he resulting files to ease synchronization tasks. The application
apabilities can be expanded with new built-in or peripheral
ensors when available. Other applications can take advantage of
he acquired data for tasks such as indoor positioning Location-
ased Services (LBSs), Pedestrian Dead Reckoning (PDR) or Visible
ight Communication (VLC), to mention a few.
GetSensorData is capable of retrieving data from hardware

ensors, software sensors.4 and external sensors connected to
he smartphone via USB or Bluetooth. The software architecture
llows for the inclusion of new sensors with minimal effort.
Radio Frequency Identification (RFID) reader5 and an inertial
otion unit sensor6 are included in the current version of the ap-
lication as examples. The application is compatible with Android
.0 (Lollipop, API 21) and above, so it can run on approximately
8.6% of the existing devices7

4 https://developer.android.com/guide/topics/sensors/sensors_overview
5 R&D Data Products RF Code M220 Mobile Reader: https://r-ddataproducts.

om/
6 Xsens MTi-G IMU: https://www.xsens.com/
7 Android distribution dashboard: https://developer.android.com/about/
ashboards

2.1. Software architecture

GetSensorData uses a modular architecture at the core of
which there is a hierarchy of classes that allows abstracting the
sensors operation. The presentation is completely separated from
the application logic, providing an easy-to-use standard interface
applicable to all sensors, internal and external. Thanks to this
interface, it is possible to share code and simplify the process
of adding new sensors to the project. In Fig. 3, a diagram of the
class hierarchy used in the application is shown, while Fig. 4
presents a flowchart of the class lifecycle within an Android
activity. Methods on the left column are called directly by the
programmer. Methods on the right are raised when a particular
event happens so that the programmer can react accordingly.

The first step to include a sensor in the application is to create
a subclass that inherits from DataSensor. Next, it is needed to
complete methods with the appropriate code. Once the subclass
is created, the operation is systematic, regardless of the sensor.
When the activity is started, it is necessary to call the con-
nect() method to connect the sensor. At the time the activity
is destroyed, the disconnect() method must be called, so the
resources assigned to the class copy are released. While the activ-
ity is running, the startReading() method allows reading data
from the sensor. On the contrary, the stopReading() method
stops the reading process. These methods are used according to
the life cycle of the main activity.

The DataSensor class is accompanied by an interface called
DataSensorEventListener. Using the delegation software de-
sign pattern [8], any class following this interface will be able
to receive sensor events. As soon as the sensor is connected,
the method onDataSensorConnected() is called. Conversely,
when the sensor is disconnected onDataSensorDisconnected
() is invoked. Finally, in case of having data to display on-
DataSensorChanged() is employed. Every time the sensor has
data to display, it will notify the event, and the corresponding
class instance will request the data to display them using the
method getStatus(). This method receives the data destination
as a parameter: screen or log file. Depending on the destination,
3

https://developer.android.com/guide/topics/sensors/sensors_overview
https://r-ddataproducts.com/
https://r-ddataproducts.com/
https://www.xsens.com/
https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186
Fig. 3. DataSensor class hierarchy in the GetSensorData software.

Fig. 4. DataSensor class instance life cycle in the GetSensorData software.
4

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

t
he data format will be different. DataSensor also offers other
sensor information about the sensor, such as its name, features or
availability, to mention a few, though a series of attributes shown
in Fig. 3. This design makes it possible to manage all sensors
equally instead of operating different events separately, saving
a lot of programming effort. Moreover, the application’s main
activity observes the events of each sensor and manages them
equally, whether displaying their data in real-time or saving them
in a file for further processing.

The main advantage of using this class hierarchy is that it
eases the addition of new sensors to the application. Future
programmers including new internal or external sensor do not
have to worry about how to display the data: they only have to
provide it. A commented example on how to create a class for
sensor managing can be seen in Appendix.

2.2. Software functionalities

When the application is launched, it displays the interface
screen shown in Fig. 5(a). At the top, the application name ap-
pears. The gear icon () at the right allows access to the ap-
plication preferences panel, which can be seen in Fig. 5(c). Also
there are four buttons that perform different actions, described
below. In the center of the screen appears the list of the different
sensors that GetSensorData can work with. Since not all Android
smartphones have the same sensors, those present in the device
show a green background, while the absent ones show a red back-
ground (see Fig. 5(a)). Therefore, it is straightforward to visualize
the variety of sensors available in the smartphone. The ‘‘Internal
Sensors’’ section shows the sensors provided by the smartphone,
while the ‘‘External Sensors’’ section offers those connected to
the smartphone using some communication protocol such as USB
or Bluetooth. The camera is also treated as a regular sensor. A
preview of the image acquired by the smartphone’s camera is
shown at the bottom right of the screen. Both the camera selected
and the preview position within the main screen can be changed
through the application preferences or disabled altogether.

The different action buttons on the main screen work as fol-
lows. The three ones at the top of the screen are toggle buttons.
‘‘Show Sensor Features’’ expands or collapses each row in the
list of sensors, showing or hiding their features: manufacturer,
model version, resolution, maximum range, power consumption
and sampling rate (as shown in the gray areas of Fig. 5(b)). ‘‘Show
Real-time Data’’ expands or collapses the real-time display for
each of the available sensors (see the white areas in Fig. 5(b)).
The sampling frequency displayed is estimated by the application
and depends on the sensor’s hardware and operating system,
although it can be configured via the preferences panel shown
in Fig. 5(c). ‘‘Start Saving a LogFile’’ starts a background task that
saves all sensory data in a log file for later off-line analysis until
the user touches it again to stop the application from saving data.
The main screen keeps showing the sensory data to the user. The
resulting file is stored in the folder ‘‘LogFiles_GetSensorData’’. Its
filename is the unique combination of the date and time when
the user started the recording process, and its format is described
below in Section 3.1. The button ‘‘Mark First Position’’ is intended
to insert reference lines through the log files. Although its original
function was aiding with the definition of a GT, the references
could mark the occurrence of any event. These marks are helpful
to locate specific signals within the log file.

3. Illustrative examples

Although GetSensorData is a general-purpose application, and
the sensory data acquired can be used for a wide variety of

purposes, it was born as a tool to aid in positioning tasks, specif-
ically during IPIN competitions. In preparation for the 2020 IPIN
edition, the creators recorded a demonstration video to show how
to use the application for data acquisition.8

Before gathering any sensory data, the first step consists of
checking that all the required sensors are available. Those present
are marked in green on the application’s main screen, while the
remaining ones are in red. The button ‘‘Show Sensor Features’’
is used to check the characteristics of each sensor needed, while
‘‘Show Real-time Data’’ is used to check if the application is reg-
istering the data collected by the sensors and the data sampling
frequency.

When the user pushes the button ‘‘Start Saving a Log File’’
the data collection starts. The application shows a message to
confirm the action, and the button shows the seconds elapsed
since the data collection started. Before the user moves to the
first position to be registered, it is advised to perform random
movements for around 30 s and then remain static for another
30 s. The phone is moved in various orientations to remove the
magnetometer biases in post-processing; then, it is kept in a static
position to estimate and remove the gyro biases afterwards. This
calibration step could be different depending on the nature of the
sensors involved in the process. Once the sensors are calibrated,
the button ‘‘Mark First Position’’ is touched to insert a ‘‘POSI’’ label
in the log file. Then, the user walks at a constant speed from the
first to the last test point, stopping in them to insert a ‘‘POSI’’
label. When the last test point is registered, the user remains
static for 30 s and then repeats the process in reverse direction,
from the last to the first point. After that, the user halts the
data collection by touching the button ‘‘Stop Saving’’ to finish the
process. Then, the log file can be shared with those interested in
analyzing the data gathered. The data gathered during the process
described in the video can be found at the aforementioned web
address.

3.1. Log files

The log files created by GetSensorData are text files contain-
ing multiple rows from the continuous stream of sensory data
generated by the smartphone. Each row is stored sequentially
as new data are received, containing different values separated
by semicolons. The row starts with a unique four-letter key
(e.g. ‘‘WIFI’’, ‘‘ACCE’’, ‘‘MAGN’’, ‘‘BLE4’’, ‘‘GNSS’’) that identifies the
sensor which the row is associated with. Due to the diversity
of the data generated by each sensor, the values following the
timestamp could include a different number of fields. An extract
of an actual log file is presented in Listing 1. The entry in line
28 corresponds to a ‘‘POSI’’ mark that can be used to label GT
locations, followed by timestamp.

4. Impact

4.1. LOPSI research group

GetSensorData was conceived as a tool to facilitate acquiring,
saving and analyzing sensory data from a smartphone. GetSen-
sorData has already been used as a local data collection tool
in several works by co-authors of this article, although it has
not been explicitly mentioned. In [9] it was used for location
studies with standard luminaries using the internal light sensor

8 http://indoorloc.uji.es/ipin2020track3/
5

http://indoorloc.uji.es/ipin2020track3/

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Fig. 5. GetSensorData main screen appearance and preferences. Left: list of detected (green) and undetected (red) sensors for the smartphone; middle: instantaneous
sensor readings; right: setup and preferences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Listing 1: Example of a log file created with GetSensorData.
WIFI:21.644;835.679;test−CAR;00:0b:86:27:3e:82;2462;−87
WIFI;21.644;835.679;test−CAR;00:0b:86:27:35:12;2427;−90
WIFI;21.644;835.679;portal−csic;00:0b:86:27:3e:81;2462;−87
GYRO;21.697;835.705;−0.09682;−0.21533;−0.21197;3
ACCE;21.697;835.712;0.34177;2.88860;8.78074;3
MAGN;21.698;835.712;−1.74700;15.14200;−35.62900;3
AHRS;21.700;835.712;14.047199;−4.788099;4.554478;0.12372229;−0.03657122;0.03429850;3
GYRO;21.702;835.712;−0.09682;−0.21533;−0.21197;3
PRES;21.703;835.715;964.0800;3
LIGH;21.704;835.715;376.0;3
ACCE;21.707;835.720;0.41779;3.05919;8.76038;3
GYRO;21.707;835.720;−0.11270;−0.19945;−0.18937;3
AHRS:21.708;835.720:14.029488;−4.859563;4.467018:0.12356212;−0.03729048:0.03347217;3
LIGH;21.709;835.722;376.0;3
GYRO;21.709;835.725;−0.13225;−0.17135;−0.21441;3
ACCE;21.709;835.731;0.31484;3.03944;8.68257;3
MAGN;21.710;835.731;−2.21700;15.14200;−35.62900:3
AHRS;21.710;835.731;14.017381;−4.898848;3.918406;0.12328733;−0.03822555;0.02868964;3
GYRO;21.711;835.731;−0.13225;−0.17135;−0.21441;3
LIGH;21.711;835.734;376.0;3
GYRO;21.711;835.736,−0.15424;−0.14447,−0.27031;3
ACCE;21.712;835.740;0.21368;2.98078;8.72208;3
GYRO;21.712;835.740;−0.15424;−0.14447;−0.27031;3
AHRS:21.713;835.740;13.977528;−4.928859;3.829847;0.12292042;−0.03859377;0.02790756;3
LIGH;21.714;835.742;387.0:3
GYRO;21.714;835.745;−0.18265;−0.11973;−0.31887;3
ACCE;21.747;835.811;−0.33878;2.73298;10.35612;3
POSI;21.748;2;40.51296307;−3.34844;0;20
MAGN;21.748;835.811;−3.00200;15.47500;−35.62900;3
AHRS;21.748;835.811;13.456279;−4.567315;0.727160;0.11731420;−0.03882872;0.00162862;3
GYRO;21.749;835.811;−0.11240;−0.07239;−0.27855;3
LIGH;21.749;835.814;417.0;3
BLE4;21.750;Eddystone;ES:A3:78:5D:3E:9A;−94;201600000010;5954;17.0;20240;13591778
BLE4;21.751;iBeacon;C6:59:DE:CF:00:51;−73;−76;2016;3;b9407130−558−466e−aff9−25556b57fe6d
BLE4;21.751;iBeacon;F2:1E:E9:6C:5B:FB;−74;−76;2016;5;b9407f30−f5f8−466e−aff9−25556b57fe6d
BLE4;21.752;iBeacon;CO:F6:0F:77:8A:E9;−76;−76;2016;1;b940730−f5f8−466e−aff9−25556b57fe6d

and the external MTi-Xsens inertial sensor. Moreover, in [10]

GetSensorData was used with external RFID readers from RFCode

for tomography-based localization. Also, readings from external

USB and Bluetooth sensors were first presented in these works.
6

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

4

e
i
p
c
t
o
d
f
w

a
(
s
s
a
f
E
t
(
o

t
t
d
u
i

4

h
p
M
C
s
c
a
t
d
A
p
t
t
c
b
p
s
b
n
t
p

4

p
m
S
t
s
p
w
b

.2. IPIN competitions

Additionally, GetSensorData has been tested in the different
ditions of IPIN conference, starting with 2016 [2]. Specifically
t was used in an off-site and offline positioning competition,
roviding beforehand the data gathering and positioning systems
alibration. Multiple sources of information were supplied thanks
o the log files created with GetSensorData. Those in charge
f generating the log files moved continuously while recording
ata, walking and realistically holding the smartphone through
our different buildings. Five teams took part in the competition,
orking on the same dataset with different approaches.
In [5] authors describe the results of the IPIN 2017 competition

nd compare them with other competition-based approaches
Microsoft [11], and Perf-loc [12]) and online evaluation web-
ites, focusing on the smartphone-based (off-site) track. All the
ensitive information, such as Wi-Fi Service Set Identifier (SSID)’s
nd Media Access Control (MAC) addresses were anonymized
or the IPIN 2018 smartphone-based positioning challenge [13].
ach subsequent IPIN edition introduced new challenges such as
he highest update rate (2019 [14] /2020 [15]), large open areas
2020 [15]), custom Bluetooth Low Energy (BLE) network (2021)
r floor transition in an auditorium (2021).
GetSensorData was also used as a teaching tool [6] in a PDR tu-

orial. During the practical session, the attendees were requested
o perform experiments after installing GetSensorData on their
evices. Then, each of them could gather data and process it to
nderstand and practice the PDR concepts and methods proposed
n the tutorial.

.3. Other research groups

After being presented in IPIN competitions, many researchers
ave taken advantage of GetSensorData features. A vision-aided
ositioning system was evaluated on the 4th floor of Sir Peter
ansfield Building at the University of Nottingham in Ningbo,
hina, using a camera and the PDR data collected with GetSen-
orData and a Huawei MT7-TL00 [16]. A calibration-free based on
rowdsourced smartphone data was proposed in [17]. To validate
systematic approach to generating 3D path loss heat maps,

he authors of [18] used GetSensorData to collect the reference
ata at each cubic meter in the hallways of two floors in the
rfa Karim block at the University of Gujrat. The authors of [19]
roposed a method to detect behavior changes in the daily rou-
ines of people using BLE-based positioning information. In [20]
he authors proposed a site survey approach that can automati-
ally build maps of opportunistic signals for indoor localization
y a dedicated surveyor using a smartphone. Authors of [21]
roposed a transitional unsupervised learning algorithm able to
egment massive unlabeled sequences and learn the relationship
etween two consecutive signal states and one-step motion. Fi-
ally, GetSensorData is also a part of the research work related
o the magnetic field sensing for pedestrian and robot indoor
ositioning developed in [7].

.4. Intended users

Although GetSensorData functionality in the previous exam-
les remains practically the same, its architecture has been opti-
ized. The modular and extensible class hierarchy presented in
ection 2.1 is the main enhancement of the version presented in
his paper. Also, the camera was recently included as a sensor
o that GetSensorData could aid in the research of visible light
ositioning systems for smartphones developed in [22,23]. This
ork is part of the first author’s PhD dissertation, scheduled to
e published in the coming months.

From the user’s perspective, Android applications follow an
event-driven architecture, responding to user interaction when-
ever they attempt to perform an action. GetSensorData has been
conceived with two types of users in mind: the end-user, who
uses the application to obtain sensory data, querying it in real-
time or processing it later, and the researcher who wishes to
extend the functionality of the application, including new ap-
propriate sensors for their work. To meet the end-user needs, it
is enough to offer an application that provides the functionali-
ties described in Section 2.2. However, satisfying the researchers
needs is somewhat more complicated: adding new sensors to
the application requires some programming skills, which is not
guaranteed given that researchers interested in obtaining sensory
data from a smartphone are part of a very heterogeneous group
of people with very diverse programming skills. This software
is an open tool devoted to data collection for smartphone-based
applications, which will enable the community to provide results
with a higher degree of versatility.

5. Conclusions

We have introduced GetSensorData, an open-source applica-
tion for presenting, collecting and analyzing sensory data from
Android smartphones. The development of this application has
arisen from the collaboration of several prestigious research in-
stitutions, given their shared need to obtain sensory data from
cell phones. The sensors can be embedded in the device or con-
nected externally. The camera is also considered a sensor, and a
preview can be shown in the application screen. This application
is compatible with Android 5.0 (Lollipop, API 21) and above, so
it can run on approximately 98.6% of the existing devices. Get-
SensorData software architecture allows for expandability with
minimal effort. After more than six years of testing throughout
different contexts, and many researchers taking advantage of
the application, the application is ready to be open-source and
available through a Git public repository that fosters collabora-
tion via pull requests. Different repositories with documentation
and complementary tools accompany the application. We hope
GetSensorData keeps helping the community and growing as
new sensors are included in modern smartphones, and external
sensors of different nature are available.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been supported by the Spanish Government and
the European Regional Development Fund (ERDF) through Project
MICROCEBUS under Grant RTI2018-095168-B-C54/C55, and by
the Regional Government of Extremadura and ERDF-ESF under
Project GR21054.
7

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

L
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

c
a
/
r
s

isting 2: Ambient temperature DataSensor subclass.

class AmbientTemperatureDataSensor(
context: Context, updateInterval: Double

): DataSensor(
context, DataSensorType.AmbientTemperature , updateInterval

) {

override fun getName(): String =
if (sensor != null) {

sensor.name
} else {

context.getString(R.string.ambient_temperature_sensor_not_detected)
}

override fun getFeatures(): String =
if (sensor != null) {

// Return sensor features
} else {

context.getString(R.string.no_features)
}

override fun getStatusForScreen(): String {
// Return sensor status formatted to show directly to the user

}

override fun getStatusForLog(): String {
// Return sensor status formatted to save in the log file

}
}

Listing 3: DataSensor life cycle inside the activity.

public class MainActivity implements DataSensorEventListener {
...
AmbientTemperatureDataSensor ambientTemperatureDataSensor;
...
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
...
ambientTemperatureDataSensor = new AmbientTemperatureDataSensor();
ambientTemperatureDataSensor.connect();
...

}

@Override
protected void onResume() {

...
if (ambientTemperatureDataSensor.isAvailable()) {

ambientTemperatureDataSensor.startReading();
}
...

}

@Override
protected void onPause() {

...
ambientTemperatureDataSensor.stopReading();
...

}

@Override
protected void onDestroy() {

...
ambientTemperatureDataSensor.disconnect();
...

}
...

}

Appendix A. Sample code snippets analysis

Listing 2 shows an abridged version of the Kotlin subclass in
harge of collecting features and data from the ambient temper-
ture sensor. The full code of the class can be found at https:
/bit.ly/3tLD3p1. It matches the data flow depicted in Fig. 4. Any
esearcher interested in including a new sensor in GetSensorData
hould follow the same pattern.

Besides, Listing 3 provides an instance of how the ambient
temperature sensor is used inside the application main activity,
programmed in Java. Only the code related to that class is shown,
using an ellipsis to mark the omitted parts. The full code of the
class can be found at https://bit.ly/3b9mWuX.

To finish, Listing 4 contains a reduced version of the Java code
used to collect and display sensors data via a DataSensorRecy-
clerView instance. The full code can be found at https://bit.
ly/3xDZZI3. This class exhibits the same behavior of a standard
8

https://bit.ly/3tLD3p1
https://bit.ly/3tLD3p1
https://bit.ly/3tLD3p1
https://bit.ly/3b9mWuX
https://bit.ly/3xDZZI3
https://bit.ly/3xDZZI3
https://bit.ly/3xDZZI3

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco et al. SoftwareX 19 (2022) 101186

L
1
2
3
4
5
6
7
8
9

10
11
12
13
isting 4: DataSensor data is displayed in the screen.

@Override
public void onDataSensorChanged(@NotNull DataSensor dataSensor) {

...
String status = dataSensor.getStatus(

DataSensorStatusDestination.Screen
);

if (dataSensorsRecyclerView.getShowSensorRealTimeData()) {
dataSensor.setStatusForScreen(status);
dataSensorsRecyclerView.updateStatus(dataSensor);

}
...

}

RecyclerView,9 with some modifications to ease working with
it in this project. Data is stored in a log file following a similar
procedure.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.softx.2022.101186.

References

[1] Ehrlich CR, Blankenbach J. Pedestrian localisation inside buildings based
on multi-sensor smartphones. In: 2018 Ubiquitous positioning, indoor
navigation and location-based services. 2018, p. 1–10.

[2] Torres-Sospedra J, Jiménez AR, Knauth S, Moreira A, Beer Y, et al.
The smartphone-based offline indoor location competition at IPIN 2016:
analysis and future work. Sensors 2017;17(3). http://dx.doi.org/10.3390/
s17030557, URL https://www.mdpi.com/1424-8220/17/3/557.

[3] Laoudias C, Constantinou G, Constantinides M, Nicolaou S, Zeinalipour-
Yazti D, et al. The airplace indoor positioning platform for android
smartphones. In: 2012 IEEE 13th international conference on mobile data
management. 2012, p. 312–5.

[4] Georgiou K, Constambeys T, Laoudias C, Petrou L, Chatzimilioudis G, et
al. Anyplace: A crowdsourced indoor information service. In: 2015 16th
IEEE international conference on mobile data management. Vol. 1. 2015,
p. 291–4.

[5] Torres-Sospedra J, Jiménez AR, Moreira A, Lungenstrass T, Lu W-C, et
al. Off-line evaluation of mobile-centric indoor positioning systems: the
experiences from the 2017 IPIN competition. Sensors 2018;18(2). http://
dx.doi.org/10.3390/s18020487, URL https://www.mdpi.com/1424-8220/18/
2/487.

[6] Jiménez AR, Seco F, Torres-Sospedra J. Tools for smartphone multi-sensor
data registration and GT mapping for positioning applications. In: 2019
International conference on indoor positioning and indoor navigation.
2019, p. 1–8. http://dx.doi.org/10.1109/IPIN.2019.8911784.

[7] Antsfeld L, Chidlovskii B. Magnetic field sensing for pedestrian and robot
indoor positioning. In: 2021 International conference on indoor positioning
and indoor navigation. 2021, p. 1–8. http://dx.doi.org/10.1109/IPIN51156.
2021.9662599.

[8] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of
reusable object-oriented software. Addison Wesley; 1994.

[9] Jiménez AR, Zampella F, Seco F. Light-matching: A new signal of oppor-
tunity for pedestrian indoor navigation. In: International conference on
indoor positioning and indoor navigation. IEEE; 2013, p. 1–10.

[10] Jiménez A, Seco F. Combining RSS-based trilateration methods with
radio-tomographic imaging: Exploring the capabilities of long-range RFID
systems. In: 2015 International conference on indoor positioning and
indoor navigation. IEEE; 2015, p. 1–10.

9 https://developer.android.com/guide/topics/ui/layout/recyclerview

[11] Lymberopoulos D, Liu J. The Microsoft indoor localization competition: Ex-
periences and lessons learned. IEEE Signal Process Mag 2017;34(5):125–40.
http://dx.doi.org/10.1109/MSP.2017.2713817.

[12] Indoor localization & tracking. 2021, URL https://perfloc.nist.gov/perfloc.
php.

[13] Renaudin V, Ortiz M, Perul J, Torres-Sospedra J, Jiménez AR, et al.
Evaluating indoor positioning systems in a shopping mall: The lessons
learned from the IPIN 2018 competition. IEEE Access 2019;7:148594–628.
http://dx.doi.org/10.1109/ACCESS.2019.2944389.

[14] Potortí F, Park S, Crivello A, Palumbo F, Girolami M, et al. The IPIN
2019 indoor localisation competition—Description and results. IEEE Access
2020;8:206674–718. http://dx.doi.org/10.1109/ACCESS.2020.3037221.

[15] Potortí F, Torres-Sospedra J, Quezada-Gaibor D, Jiménez AR, Seco F,
et al. Off-line evaluation of indoor positioning systems in different
scenarios: The experiences from IPIN 2020 competition. IEEE Sens J
2022;22(6):5011–54. http://dx.doi.org/10.1109/JSEN.2021.3083149.

[16] Yan J, He G, Basiri A, Hancock C. Vision-aided indoor pedestrian dead
reckoning. In: 2018 IEEE international instrumentation and measurement
technology conference. 2018, p. 1–6. http://dx.doi.org/10.1109/I2MTC.2018.
8409599.

[17] Zhao Y, Zhang Z, Feng T, Wong W-C, Garg HK. GraphIPS: Calibration-free
and map-free indoor positioning using smartphone crowdsourced data.
IEEE Internet Things J 2021;8(1):393–406. http://dx.doi.org/10.1109/JIOT.
2020.3004703.

[18] Haider A, Farooq MH, Mukhtar H, Ali MU. A systematic approach to
generate 3D path loss heat maps for WIFI indoor positioning. Eng
Proc 2021;12(1). http://dx.doi.org/10.3390/engproc2021012106, URL https:
//www.mdpi.com/2673-4591/12/1/106.

[19] Martín AJ, Gordo IM, Gómez DG, de Villa SG, Plaza SL, et al. BLE-based
approach for detecting daily routine changes. In: 2021 IEEE international
symposium on medical measurements and applications. 2021, p. 1–6.
http://dx.doi.org/10.1109/MeMeA52024.2021.9478752.

[20] Liang Q, Liu M. An automatic site survey approach for indoor localization
using a smartphone. IEEE Trans Autom Sci Eng 2020;17(1):191–206. http:
//dx.doi.org/10.1109/TASE.2019.2918030.

[21] Ye X, Huang S, Wang Y, Chen W, Li D. Unsupervised localization by
learning transition model. Proc ACM Interact Mob Wearable Ubiquitous
Technol 2019;3(2). http://dx.doi.org/10.1145/3328936.

[22] Gutiérrez JD, Álvarez FJ, Aguilera T, Paredes JA, Morera J. Visible light
positioning for smartphones based on biphase mark coding: a proof of
concept. In: 2018 International conference on indoor positioning and
indoor navigation. 2018, p. 4.

[23] Gutierrez JD, Aguilera T, Álvarez Franco FJ, Aranda FJ. A blender-based
simulation tool for visible light positioning with portable devices. In: 2022
International instrumentation and measurement technology conference.
2022, p. 6.
9

https://doi.org/10.1016/j.softx.2022.101186
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb1
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb1
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb1
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb1
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb1
http://dx.doi.org/10.3390/s17030557
http://dx.doi.org/10.3390/s17030557
http://dx.doi.org/10.3390/s17030557
https://www.mdpi.com/1424-8220/17/3/557
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb3
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb4
http://dx.doi.org/10.3390/s18020487
http://dx.doi.org/10.3390/s18020487
http://dx.doi.org/10.3390/s18020487
https://www.mdpi.com/1424-8220/18/2/487
https://www.mdpi.com/1424-8220/18/2/487
https://www.mdpi.com/1424-8220/18/2/487
http://dx.doi.org/10.1109/IPIN.2019.8911784
http://dx.doi.org/10.1109/IPIN51156.2021.9662599
http://dx.doi.org/10.1109/IPIN51156.2021.9662599
http://dx.doi.org/10.1109/IPIN51156.2021.9662599
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb8
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb8
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb8
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb9
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb9
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb9
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb9
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb9
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb10
https://developer.android.com/guide/topics/ui/layout/recyclerview
http://dx.doi.org/10.1109/MSP.2017.2713817
https://perfloc.nist.gov/perfloc.php
https://perfloc.nist.gov/perfloc.php
https://perfloc.nist.gov/perfloc.php
http://dx.doi.org/10.1109/ACCESS.2019.2944389
http://dx.doi.org/10.1109/ACCESS.2020.3037221
http://dx.doi.org/10.1109/JSEN.2021.3083149
http://dx.doi.org/10.1109/I2MTC.2018.8409599
http://dx.doi.org/10.1109/I2MTC.2018.8409599
http://dx.doi.org/10.1109/I2MTC.2018.8409599
http://dx.doi.org/10.1109/JIOT.2020.3004703
http://dx.doi.org/10.1109/JIOT.2020.3004703
http://dx.doi.org/10.1109/JIOT.2020.3004703
http://dx.doi.org/10.3390/engproc2021012106
https://www.mdpi.com/2673-4591/12/1/106
https://www.mdpi.com/2673-4591/12/1/106
https://www.mdpi.com/2673-4591/12/1/106
http://dx.doi.org/10.1109/MeMeA52024.2021.9478752
http://dx.doi.org/10.1109/TASE.2019.2918030
http://dx.doi.org/10.1109/TASE.2019.2918030
http://dx.doi.org/10.1109/TASE.2019.2918030
http://dx.doi.org/10.1145/3328936
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb22
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00112-1/sb23

	GetSensorData: An extensible Android-based application for multi-sensor data registration
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Log files

	Impact
	LOPSI research group
	IPIN competitions
	Other research groups
	Intended users

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Sample Code Snippets Analysis
	Appendix B. Supplementary data
	References

