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Performance Evaluation of 3D-LOCUS
Advanced Acoustic LPS

José Carlos Prieto, Antonio Ramón Jiménez, Jorge Guevara, Joao L. Ealo,
Fernando Seco, Javier O. Roa, and Francisco Ramos

Abstract—Local Positioning Systems (LPSs) based on acoustic
transducers (mainly ultrasonic) offer accurate localization in in-
door environments. However, their performance is commonly
limited by the transducers’ frequency bandwidth and emission
pattern. 3D-LOCUS is a new advanced acoustic LPS that claims
subcentimeter accuracy even in turbulent environments. This is
achieved through the use of broadband omnidirectional trans-
ducers, suitable design of emitted signals, proper calibration, and
bidirectional emissions. This paper evaluates the 3D-LOCUS LPS
by providing results in terms of some positioning metrics such
as accuracy, resolution, and coverage, which show how it outper-
forms other state-of-the-art LPS prototypes. 3D-LOCUS operat-
ing in bidirectional mode minimizes environmental effects, such
as temperature and airflows, attaining localization errors below
9 mm with a 90% confidence level, an RMS error below 7.4 mm,
and 5 mm resolution in a localization volume of 2 × 2 × 0.4 m3.

Index Terms—Accurate localization, broadband transducers,
Local Positioning Systems (LPSs), system evaluation, ubiquitous
computing.

I. INTRODUCTION

THE demand of new location-aware solutions for new
necessities has triggered the research and development of

new location platforms for accurate or physical localization
(some interesting surveys can be found in [2] and [3]). The
design of these platforms strongly depends on the application
in mind, for example, to operate outdoor or indoors. The
most prominent technology for outdoor environments is the
NAVSTAR Global Positioning System (GPS), which is of
limited use indoors [4]. Systems designed to operate indoors
are usually referred to as Local Positioning Systems (LPSs)
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since they are designed for covering an enclosed area such as
a building, a room, etc.

Recent research on positioning systems aims to improve
the positioning accuracy. This can mainly be achieved by
a precise estimation of the range between a beacon and a
receiver; in particular, for GPS, by differential carrier-based
ranging and trilateration techniques. The GPS technology is
now able to obtain positioning errors as low as 20 mm with
Real-Time Kinematics Differential GPS (DGPS-RTK) [5] in
outdoor environments free of obstacles. LPSs based on Time
of Flight (ToF) measurements such as Ultra-Wideband (UWB)
achieve accuracies of tens of centimeters [6], [7]. LPSs based
on Received Signal Strength Indicator (RSSI) such as several
implementations using Wifi [8], RFID [9], or mobile networks
have several meters of error. Artificial vision developments
achieve accuracies of several centimeters [10]. Systems based
on acoustic signals are able to attain accuracies of a few
centimeters, with the most representatives being Active Bat
[11], Cricket [12], SmartLocus [13], and Dolphin units [14].

Recently, in [1], a new advanced acoustic location system
was presented by the authors of this paper. This LPS, which is
called 3D-LOCUS, outperforms current acoustic LPSs by being
able to precisely determine a mobile target position with sub-
centimeter accuracy. Additionally, 3D-LOCUS has the ability
to compensate temperature gradients and airflows. Its accuracy
is independent of the node’s orientation, since transducers have
a virtual point-like center of emission and reception. Its flexi-
bility to work as a centralized, privacy-oriented, or bidirectional
system, together with the parameterization of different access
modes and signal designs, makes it easy to compare it to similar
systems reported in the literature. The 3D-LOCUS distributed
computing architecture is able to update the target position
up to ten times per second in Code-Division Multiple-Access
(CDMA) centralized mode.

In this paper, we present a complete evaluation of the
performance of the 3D-LOCUS system. Section II presents
a model for the 3D-LOCUS acoustic emission and reception
process. Taking into account the expected ranging precision
and its dependency with the properties of the signal, we design,
according to this model, a good signal for emission and a proper
sampling for reception. Section III evaluates the goodness of
the 3D-LOCUS calibration method. It compares the estimated
position of the transducers at every fixed node in several
separate calibrations. Finally, in Section IV, the positioning
performance obtained with this system is evaluated in terms
of RMS errors and confidence levels while also taking into
account several aspects, such as resolution and coverage, which
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Fig. 1. Transfer functions that model the available bandwidth in the emission/reception process of the 3D-LOCUS system showing its dependence on the
transducers’ orientation. (a) Transfer function gain. (b) Transfer function phase.

are not usually evaluated in other LPS systems. A discussion
and some conclusions are given in Section V.

II. SIGNAL PARAMETER SELECTION

Sonic signals generated by 3D-LOCUS nodes are based
on BPSK-modulated spreading Golay codes [15], specifically,
preferred groups of unpaired codes [16]. These signals are
correlated at the receiver for ToF estimation, which makes use
of an efficient Golay correlator (EGC) [17]. The use of such
signals improves the ranging accuracy and robustness against
environmental noise and enables code-multiplexing schemes.

The use of full Golay pairs was not considered since it
would make difficult the easy expansion of the system. In its
current implementation, the system could receive and process
full Golay signals since all the processing is implemented in
software; but it only has enough hardware for emitting BPSK
signals.

The main parameters selected for the emitted signal are
the carrier frequency (fc), the length of the sequence, and
the number of carrier cycles per code chip. For reception, we
need to select the sampling frequency (fs). To obtain these
parameters, we will consider a fixed signal-to-noise ratio and
two models of the acoustic transmission channel.

An experimental identification of the transfer function of
the ultrasonic channel was accomplished. This model includes,
apart from the channel effect, the electronics and transducer
influence on the signal. The transfer function was obtained by
emitting a chirp signal from 0 Hz to 500 kHz, acquiring the
received signal at a sampling rate of 1 MHz, and adjusting
an IIR filter of order 10 by minimizing the output error, i.e.,
the difference between filter and system outputs. Fig. 1 shows
the transfer function obtained at several orientations between
emitter and receiver. Note that the usable bandwidth diminishes
as obliqueness increases [Fig. 1(a)], but the effective bandwidth
is about 20 kHz for most orientations considering a 6 dB band.
The phase change [Fig. 1(b)] is quite smooth for the frequen-

cies of interest (5–25 kHz) if the orientation between both
transducers is equal or lower than 60◦. At higher orientation
angles, the phase response is worsened outside the 5–20 kHz
window.

This transfer function was used for evaluating the influence
of carrier, code, and sampling frequencies, as well as code
length, on the precision of the measuring process. Fig. 2 shows
the influence of the considered parameters on the variance of
distance estimation. The study is performed by simulation using
two transfer function models: 1) ideal (red circles), with infinite
bandwidth, so that the received signal is the same as the emitted
signal; and 2) the transfer function previously mentioned above
(blue), identified for the 3D-LOCUS system, without rotation
(asterisks), 30◦ rotation (squares), 45◦ rotation (diamonds), and
60◦ rotation (triangles). Signals are corrupted with additive
white Gaussian noise to achieve an SNR of 12 dB.

This figure shows the main influence of the rotation angle
on the range measurements: the increment of the variance.
This influence also depends on the parameters of the signal,
i.e., being more important for lower sampling frequencies, for
instance.

Fig. 2(a) shows the influence of the modulating carrier fre-
quency (fc). The variance will decrease with higher frequencies
in the ideal response, since the bandwidth of the resulting signal
increases [18]. The filtered response will be more affected when
the carrier approaches the band edges, since part of the signal
will be filtered. The minimum of the variance depends on the
model used. Since the higher frequencies are more affected by
transducer rotation (as shown in Fig. 1), 15 kHz is chosen as a
trade of frequency, which is valid for most orientations between
transducers, for the modulating carrier.

Fig. 2(b) shows the influence of the number of carrier cy-
cles used for modulating every code chip (carrier and code
frequencies ratio). The number of cycles per chip defines the
chip duration and, therefore, the signal bandwidth. We see that
the ideal response is not affected when the signal bandwidth is
increased (fewer cycles per chip). A good behavior for every
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Fig. 2. Simulated ranging performance (standard deviation of range estimations) influenced by the selection of modulation, codification, and acquisition
parameters. Default parameters: fc = 15 kHz, fs = 150 kHz, cycles/chip = 1, SNR = 12 dB, and L = 32 chips. (a) Carrier frequency. (b) Cycles per chip.
(c) Sequence length. (d) Sampling frequency.

transducer’s orientation is found using one or more cycles per
chip. Therefore, to shorten the resulting signal as much as
possible (for avoiding the effect of air turbulence), we use one
cycle per chip.

When analyzing the ToF variance with respect to the length
of the sequence, we find, as expected, that the longer is the
sequence, the smaller is the variance [Fig. 2(c)]. However,
taking into account possible turbulences, it is important to
keep the duration of the signal short. The proper correlation of
spread-spectrum-coded signals is very sensitive to turbulences
in the air; fortunately, due to the dynamics of air, there is a
time threshold for the duration of the signal (10 ms) that, if
not surpassed, makes signal correlation quite robust against tur-
bulences [19]. A good compromise between a short signal and
a low variance is obtained using 32 chip long codes (L = 32).

Finally, the variance will be lower with higher sampling
frequencies (fs) used in the receiver [Fig. 2(d)]; however,
this implies more computation time. It can be noticed that,
at frequencies below 100 kHz, the standard deviation of the
ToF significantly grows for orientations higher than 60◦. For
guarantying good accuracy in most circumstances, 150 kHz is

chosen as the sampling frequency. At this sampling rate, ten
samples are used to digitize each carrier cycle.

Subsequent evaluation tests of 3D-LOCUS will use as the
emitted signal a Golay code with 32 chips, which is modulated
with 1 cycle per chip and a 15 kHz carrier. Acquisition will
be performed at the receiver with a sampling frequency of
150 kHz. This signal design took into account the variable
bandwidth, which depends on the transducer rotation, the
expected influence of air turbulences, and the computational
complexity of the receiver.

III. NODE’S POSITION CALIBRATION ASSESSMENT

We deployed seven fixed wired nodes oriented downward in
a robotic cell (2800 mm × 2800 mm × 2800 mm) (Fig. 3).
One additional wired node was located inside the cell pointing
upward. A Stäubli Unimation industrial robotic arm is used
as reference for positioning a mobile wireless node fixed to
its wrist as a tool, which is always oriented upward. These
nodes are numbered from 1 to 9, where the number 3 is the
mobile node, the number 6 is the fixed upward node, and the
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Fig. 3. Physical description of the actual implementation of the 3D-LOCUS
system labeling its main components: fixed nodes in the structure, mobile node
in the robot wrist, central node for measurement synchronization, and industrial
fan for air perturbations.

rest correspond to the fixed downward nodes, which are also
called beacons.

The calibration of the node’s position was performed by
positioning the wireless node in four points with the robot arm
and measuring the ToFs to the emitter and the receiver of every
node fixed to the cell structure. Three of these points were
arranged to form an almost equilateral triangle, and the fourth is
in its center at a different height. From these measurements, the
sound velocity and the 3-D coordinates of every node’s emitter
and receiver were calculated, which was made considering the
sound velocity as unknown in the trilateration equations [20],
in the upward (1) and downward (2) propagation directions:

V̂sToFij =
√

(x̂rj
−xei

)2+(ŷrj
−yei

)2+(ẑrj
−zei

)2 (1)

V̂sToFji =
√

(x̂ej
−xri

)2+(ŷej
−yri

)2+(ẑej
−zri

)2 (2)

where
V̂s estimated sound velocity;
ToFij/ji ToF measured from the mobile node at

point i to the beacon j or in the other
direction;

(x̂e/rj
, ŷe/rj

, ẑe/rj
) estimated position or the transducers

(e: emitter, r: receiver) of the fixed
node j;

(xe/ri
, ye/ri

, ze/ri
) known mobile transducers’ (e: emitter,

r: receiver) position at point i.

This algorithm minimizes the effect of environmental tem-
perature drifts and gradients on positioning, since it determines
an averaged value for the sound velocity without having to use
a thermometer. If Vs is estimated with a temperature measure-
ment, then it will depend on the spatial position where the
temperature is measured, which could not fully correspond to
the temperature of the path followed by the acoustic signal.

The consistency of calibration results was evaluated by re-
peating 11 independent node position calibrations. The vari-
ation of every (x̂e/rj

, ŷe/rj
, ẑe/rj

) coordinate with respect to
their mean is shown in Fig. 4 for emitters (first column) and
receivers (second column). It can be noticed that the variability
of the emitters is higher than that of the receivers. We believe
that this effect is due to the higher omnidirectionality of the
receivers that can capture some multipath produced in the
robotic arm. The repetitiveness of the transducers’ position is
approximately bounded by ±2 mm for emitters and ±1 mm for
receivers on every coordinate.

Since there is no real knowledge of the exact position of
emitters and receivers, we considered an indirect procedure
to estimate the calibration performance. The actual distance
between both transducers’ center on every node (64.11 mm) is
used as an indication of calibration accuracy. Fig. 5(a) shows
the distances obtained from the calibration data. The mean
measured distance between both transducers, considering all
the nodes, is about 64 mm, with variations of ±4 mm. Fig. 5(b)
shows the variability of the measured distance relative to the
mean distance of every node, with variations of ±2 mm. These
results suggest that the calibration of the fixed node transducers’
position is accurate at the millimeter level, and the system is
ready for positioning evaluation.

IV. POSITIONING EVALUATION

Most ultrasonic LPS evaluations only rely on the overall
accuracy achieved by the system under some confidence level.
In this section, a more detailed evaluation of the 3D-LOCUS
positioning error will be presented, which takes into account the
percentage of valid measurements, precision, trueness, RMS
values, and overall error accuracy. Afterward, an analysis of the
system resolution will be presented. Finally, an evaluation of
the coverage of the system will be shown.

A. Positioning Error

For evaluating the error present in 3-D position estimation,
three different configurations were considered.

1) Centralized: the nodes oriented upward act as emitters,
and the nodes fixed downward act as receivers.

2) Privacy oriented: the nodes fixed to the cell structure act
as emitters (i.e., sound waves propagate in the opposite
direction than in the centralized mode).

3) Bidirectional: both ways sequentially.

In the last case, both emitter and receiver positions of the
mobile node are determined. The average of both position
estimations is considered as the resulting position of the node.
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Fig. 4. Evaluation of the transducers’ position consistency of the seven fixed nodes for 11 independent calibrations, showing the fluctuation of the position
estimation of their emitters and receivers for every coordinate axes. (a) x̂ej fluctuations. (b) x̂rj fluctuations. (c) ŷej fluctuations. (d) ŷrj fluctuations.

(e) ẑej fluctuations. (f) ẑrj fluctuations.
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Fig. 5. Evaluation of the transducers’ distance consistency of the seven fixed downward nodes for each of the 11 calibrations, showing the variation in distance
obtained for separate nodes and its variation with different calibrations. (a) Distance between nodes’ transducers. (b) Distance variation around their mean.

The following four test conditions were evaluated for every
configuration:

1) time multiplexing (Time-Division Multiple Access,
TDMA) (calm air);

2) code multiplexing (CDMA1) (calm air);
3) TDMA with airflows (fan stream at 2 m/s);
4) CDMA1 with airflows (fan stream at 2 m/s).

The first condition is the most ideal case since neither wind
disturbances nor signal interference is present. The CDMA
mode presents signal degradation due to the interference among
signals coming from different nodes. The potential deteriora-
tion of signal correlation that can be caused by air turbulence is
minimized by the short signal length, as presented in Section II.
However, airflows produce distance measurement degradation
since the ToF varies when the propagation medium (air) moves
(airflow).

CDMA measurements are degraded by two highly related
factors: Multiple-Access Interference (MAI) and the near–far
effect. The latter is due to power differences among the received
signals from each emitting node. It was reduced enough to
enable correct measurements, i.e., readjusting the emission
power in every point in CDMA mode. The two upward nodes
were tested by emitting the same power. The MAI errors are
due to the cross-correlation properties of the codes (since they
are not completely orthogonal) and worsened because of the
near–far effect. In this paper, MAI was reduced by selecting a
group of codes with good cross-correlation properties.

The update rate depends on the access mode (TDMA or
CDMA) and the configuration. In TDMA mode, the signals
are sequentially emitted from every node, requiring more time
than in CDMA mode, where all the signals are simultaneously
emitted. If 3D-LOCUS is configured to only transfer ToFs from
the sensing nodes to the central node (fastest operation mode),

1Multiple-access configurations were tested with just four downward nodes.

TABLE I
TWENTY-TWO TEST POINTS CONSIDERED FOR SYSTEM EVALUATION

then the update rate is 10 Hz in CDMA centralized mode (the
higher) and 2 Hz in TDMA bidirectional mode (the lower). If
the number of fixed nodes is duplicated, then the update rate
would be 1 Hz in TDMA.

For every configuration and test condition, 22 test positions
were defined, and more than 100 measurements were made on
each position. One position was in the center of the cell, and
the remaining 21 were in seven different “xy” points around the
robot at three different heights (differing by 200 mm). Table I
defines the exact position of these 22 test points.

Position and sound velocity were estimated from (1) and (2)
through a Levenberg–Marquardt algorithm, which minimizes
the sum of the squared residuals, defined as the difference
between both terms of the equations. A point located 1.5 m
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Fig. 6. Cumulative positioning error distributions and error histograms for the considered configurations under test conditions for the overall evaluation of system
performance. (a) Centralized. (b) Privacy oriented. (c) Bidirectional.
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TABLE II
VALID READINGS, 90% AND 95% CONFIDENCE LEVEL POSITIONING

ERRORS, AND RMS ERRORS FOR THE CONSIDERED

CONFIGURATIONS UNDER TEST CONDITIONS

below the centroid of the beacons and a value for the velocity
of sound of 340 m/s are used as the starting estimations of
the algorithm. Estimations with residuals above 50 mm were
considered as outliers and labeled as “non valid readings.”
These estimations are rejected by the system and not considered
in the error distributions.

The obtained results are shown in Fig. 6 for every test
condition, presenting the cumulative positioning error distri-
butions and error histograms for the centralized [Fig. 6(a)],
private [Fig. 6(b)], and bidirectional [Fig. 6(c)] configurations.
These error distributions can be approximated by nonnormal-
ized noncentral chi-square distributions with three degrees of
freedom in every point. The numerical results extracted from
these graphics are presented in Table II, which corresponds to
the percentage of valid readings, absolute error achieved with
90% and 95% confidence levels, and RMS positioning errors.

The percentage of valid readings diminished as the disturbing
conditions increase, i.e., changing from 100% to 71.5%. The
privacy-oriented configurations returned less valid data than the
centralized configurations. The bidirectional estimations are a
combination of the previous positioning data; therefore, they
will always return fewer valid measurements than either of the
unidirectional configurations.

As expected, a poorer performance is found when the mea-
surement disturbances increase (multiple access and wind). The
system performance was less degraded by wind for CDMA
modes of operation than those using TDMA (see the cumulative
error distributions in Fig. 6). The presence of several outliers
in private CDMA mode [visible in the error histograms of
Fig. 6(b)] fails the general tendencies of absolute error and
RMS in this mode and in bidirectional CDMA mode. The
absolute error with 90% confidence level varies from 4.1 to
13.7 mm, and the RMS value varies from 2.8 to 10.7 mm.

The cumulative errors and the RMS values, under bidirec-
tional configuration for windy conditions, were about half of

the corresponding unidirectional modes. In a bidirectional con-
figuration under every test condition, the 90% confidence level
errors are under 10 mm, and the RMS values are below 8 mm.

For additional insight into the evaluation results, Table III
shows the positioning errors along each individual coordinate
axis. These results include the trueness measured as the mean
of the error distribution and the covariance matrix. We have
followed the recommendations of the standard ISO 5725 for
the computation of trueness and variance (which corresponds to
the precision value squared). The covariance values are almost
always lower than the variance of the corresponding axes,
which implies that the errors are partially coupled, as could
be expected from a trilateration process under some geometries
among nodes.

An evaluation of the system in outdoor environments was
accomplished using TDMA operation modes. We checked the
capability of 3D-LOCUS to compensate or diminish the wind-
dispersive effect on position estimations with natural airflows,
which is somehow different from the airflow produced with the
industrial fan. This evaluation was made under natural wind
streams with velocities of up to 3 m/s. The results obtained
from these experiments showed a reduction in the final position
dispersion in bidirectional mode of about 70%: from a standard
deviation of 9.2 and 9.6 mm in centralized and private modes,
respectively, to 3 mm in bidirectional mode. This reduction is
more significant in the x and y coordinates (from 5.8 mm to
0.9 mm in the x coordinate, and similarly for the y coordinate)
than in the z coordinate (from 5 to 2.7 mm). Therefore, we
can say that the results are similar to those found indoor with a
forced airflow, taking into account that this evaluation was made
in a single point with unknown coordinates only evaluating the
dispersion of the position estimation.

Along this analysis, the error evaluation area has been re-
stricted to the space reachable by the robotic arm. The necessity
for extending the evaluation area to wider spaces will require
the definition of new methodologies for precisely locating the
mobile test points, since they must be located with significantly
better accuracy than that of our system (with an RMS error of
2.8 mm in the best case). A total station position measurement
could be the substitution to the robot arm for extended areas.
However, the real accuracy of a total station (between ±1 and
±3 mm) would not be as good as robot accuracy and could be
closer to that observed in the system [21].

B. Resolution

System resolution is evaluated by generating a decreasing-
side squared trajectory from 10 to 1 mm side length at 1 mm
steps. This trajectory is performed by moving the mobile node
with the robotic arm. The maximum resolution that the system
would be able to offer will be the minimum discernible step in
such a trajectory.

Fig. 7(a) shows the results obtained in TDMA mode without
any perturbation, whereas Fig. 7(b) presents the results under
wind perturbations. The trajectories estimated for the emitter
(centralized mode), the receiver (private mode), and the bidi-
rectional result, as well as the theoretical true trajectories, are
presented in both figures.
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TABLE III
COORDINATE AXES ERRORS: 90% AND 95% CONFIDENCE LEVEL ERRORS, TRUENESS, RMS ERRORS,

AND COVARIANCES FOR THE CONSIDERED CONFIGURATIONS UNDER TEST CONDITIONS

Fig. 7. Stair-stepped squared trajectory described by the mobile node in TDMA mode for resolution evaluation (minimum discernible step). Trajectories followed
by emitter, receiver, and central point correspond to centralized (red), privacy oriented (pink), and bidirectional (blue) configurations, respectively. (a) Without
wind. (b) Under wind disturbances.

The results shown in Fig. 7(a) indicate that, without any
perturbation, it is possible to distinguish 2 mm steps on every
trajectory. Under airflow conditions, the attained resolution is
about 10 mm for private and centralized mode and about 5 mm
in bidirectional mode. Therefore, the bidirectional operation
mode in 3D-LOCUS is good not only for achieving subcentime-
ter positioning error but also for obtaining a good resolution.

The system resolution was also evaluated for CDMA opera-
tion, finding that the 3D-LOCUS system was not able to follow
the trajectory in this mode due to many nonvalid estimations.
This is because of the fact that neither a MAI cancellation
scheme nor an automatic adaptation of the emission power has
been implemented up to now in the 3D-LOCUS system.

C. Coverage

The capacity of the system to make measurements outside the
robotic cell was evaluated by manually moving the mobile node
following a zig-zag trajectory. This system is able to localize
far from the cell due to the omnidirectional characteristics of
their transducers [1]. This evaluation was performed in just
one quadrant, considering that the obtained results can be
extrapolated to the remaining three.

Fig. 8 shows the result obtained. It can be appreciated an
approximately circular coverage area of 4 m radius (circular
dotted line). The system accuracy is lower in this area due
to the poorer geometry (high Geometric Dilution of Precision
(GDOP) [22]), the higher dispersion in ToF measurements due
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Fig. 8. Coverage obtained when manually moving the mobile node outside
the robotic cell. The seven fixed downward nodes are represented by a red circle
and a cross (emitter and receiver of each node, respectively).

to an increase of the orientation between transducers, and the
longer propagation times.

This result does not imply that the best configuration for cov-
ering this area is the one presented, it just offers an evaluation
of the capability of the nodes for covering areas not enclosed
by them, and this feature is enabled by the good directionality
pattern of the selected transducers and the rotational invariance
of the range measurements [1]. The practical consequence is
that the node density necessary for obtaining complete coverage
in a final deployment can be very low. The evaluation of the
maximum area that could be covered separating these seven
nodes has to be studied.

V. CONCLUSION

The evaluation of the 3D-LOCUS acoustic LPS has been
presented. The main parameters involved on signal emission
and reception were selected for accurate ranging, taking into ac-
count the bandwidth and directionality of the transducers. The
calibration process for fixed nodes’ position determination was
evaluated, finding it repetitive and accurate. The 3D-LOCUS
positioning performance was evaluated by considering several
important aspects that are not usually reported with enough de-
tail in other LPS evaluations. Apart from the absolute error and
the valid reading evaluation, a measure of trueness, precision,
RMS error, resolution, and maximum attainable coverage was
offered.

The 3D-LOCUS system, in bidirectional mode, has subcen-
timeter accuracy (RMS errors below 8 mm), is able to reach
5 mm resolution, and possesses a wide coverage. These results
are also valid even under moderate airflows. Therefore, the
implemented system outperforms (in terms of accuracy, res-
olution and coverage) those LPSs found on the bibliography.
3D-LOCUS could be considered as the first subcentimeter-
accuracy acoustic LPS usable in both indoor and outdoor

environments, and it is a flexible platform to test future research
on precise positioning.
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