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ABSTRACT 

The navigation of autonomous guided vehicles (AGV’s) in industrial environments is 
often controlled by positioning systems based on landmarks or artificial beacons.  In 
these systems, the position of an AGV navigating in an interior space is determined by 
the calculation of its relative distance to beacons, whose location is known in advance.  A 
fundamental design problem associated with landmark navigation systems consists of 
determining the optimal location of the minimum number of beacons necessary to 
achieve a desired level of accuracy and reliability.  A local search procedure coupled with 
a diversification strategy is developed for this problem.  We provide comparisons with an 
earlier solution method based on genetic algorithms and show that our proposed 
procedure finds better designs in a fraction of the computational time employed by the 
genetic algorithm. 
 
Latest Revision: July 24, 2007 
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1 Introduction 

An autonomous guided vehicle (AGV) must continuously determine its position within a 
manufacturing facility in order to find a path to a desired destination.  While global 
positioning systems (GPS) have provided a reliable and cost-effective solution for 
location outdoors, no equivalent solution exists for interior environments.  One of the 
most common Local Positioning Systems (LPS) for indoors is the so-called beacon or 
landmark navigation.  The approach is similar to GPS in that the position of the AGV is 
determined by a process known as 3-D multilateration.  With this technique, the position 
of the vehicles is computed as the intersection point of several spheres that have their 
centers at the beacons’ positions and radii equal to the distance between beacons and the 
mobile element.  The reliability and robustness of these positioning systems depend on 
the correct location of the beacons.  An ineffective beacon configuration results in some 
areas that are either not covered at all or where the position cannot be calculated (e.g., 
when the beacons within the sensorial range are in line with the vehicle). 
 
Complete coverage and absence of singularities in an area does not guarantee accuracy in 
the position estimation.  Geometric dilution of precision or GDOP is a measure of 
position accuracy (R. Yarlagadda, 2000).  The DOP acts as an amplification factor that 
translates errors in the range estimation to errors in the position estimation.  Hence, even 
starting from fairly accurate range measurements, the position estimation may contain 
large errors if the DOP at the measurement point is high.  This may be caused, for 
example, by the configuration geometry of the beacons in sight.  
 
The problem of finding a beacon configuration that meets a desired level of accuracy and 
reliability is relatively simple in small regular areas (e.g., a square).  In practice, however, 
the areas to be covered may be irregular (e.g., those with several rooms with different 
shapes, passage ways and corridors), forcing the use of a large number of beacons that 
must be located in such a way that the resulting design is not only usable but also cost-
effective and flexible.  Fundamentally, this engineering design problem is multiobjective 
in nature.  Specifically, we seek a beacon configuration that is optimal or near to optimal 
with respect to three objectives: 
 

Minimize the number of beacons. While the cost of the beacons is 
relatively low compared to other costs in a manufacturing facility, 
minimizing the number of beacons results in time savings and translates 
into higher system flexibility, scalability and capacity to cover large areas 
(Sinriech and Shoval, 2000).  Flexibility is important because short 
product life cycles force manufacturing facilities (particularly those in the 
high-tech and electronic industries) to change process configurations that 
result in new vehicle paths. 
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Maximize the coverage of the workspace.  The covered workspace is 
defined as the area where the required number of beacons is available and 
their configuration results in an acceptably low DOP.  The uncovered area 
consists of singular points with high (even infinite when the beacons are 
positioned in a straight line) DOP values, and points where the beacons in 
Line Of Sight (LOS) are not sufficient for trilateration.  In the current 
context, we require 3 beacons because we use spherical positioning.  
However, it is possible for other applications to require more beacons.  In 
practice, less than 100% coverage might be acceptable, if the number of 
beacons needed to reach difficult points (e.g., corners) is unreasonably 
large. 
 
Maximize the percentage of the area that is covered with admissible DOP 
values.  Lower DOP values mean that the estimations of the positioning 
system are more accurate.  Admissible DOP values depend on the 
manufacturing context and therefore the setting of a threshold is an a priori 
design decision.  Maximizing the covered area that falls below the chosen 
threshold becomes an objective of the optimization process. 

 
As described in Roa, et al. (2005), a number of studies have been reported in the 
literature concerning the problem of optimally locating beacons, for instance the work by 
Oh and No (1994) in a nuclear reactor facility and the articles by Kang, et al (1996) and 
Kang, Park and Agrawal (1998) that address optimal placement of sensors for vibration 
control of laminated beams and plates, respectively.  The work that is closest to our 
current development is the article by Sinriech and Shoval (2000).  They developed a 
nonlinear mixed-integer programming model to minimize the number of beacons subject 
to covering a set of critical points in a work area.  The model calculates Euclidean 
distances between the selected beacons and the critical points and forces at least three 
beacons to be within specified range to each of the critical points in the entire area.  The 
three-beacon requirement is the same that we impose to be able to calculate the position 
of a vehicle using triangulation.  The given range (specified by a minimum and maximum 
distance to a critical point) is related to the physical limitation of the laser navigation 
system used in the specific environment being studied.  Sinriech and Shoval (2000) do 
not solve the proposed model due to its complexity.  Instead, they relaxed the model by 
removing all nonlinearities and solved the resulting set covering problem in order to find 
a lower bound in the number of beacons.  The set covering formulation assumes that 
beacons can only be placed in the intersections of a grid that is overlaid on the work area.  
There is a constraint for each critical point that forces the point to be covered by at least 
three beacons.  The constraint coefficients are zero or one to indicate whether or not a 
beacon placed in a particular grid intersection covers a critical point.  A greedy heuristic 
is then used to find a feasible solution to the problem.  The heuristic considers, in 
descending order, the locations in the grid that will cover the most number of critical 
points.  As beacons are added to these locations, the convexity constraints (which are 
relaxed in the set covering problem) are checked.  The convexity constraints ensure that 
each critical point is located within the convex hull of the set of beacons serving the 
critical point. 
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Although the work of Sinriech and Shoval (2000) addresses certain aspects of the 
problem that are of interest to us (e.g., the minimization of the number of beacons), their 
procedure focuses on finding a beacon configuration that covers critical points (such as 
pick up/ delivery points for material-handling vehicles) as opposed to one that covers an 
entire area.  To the best of our knowledge, the only exiting procedure for the optimization 
problem that we propose to tackle is the genetic algorithm (GA) described by Roa, et al 
(2005).  This basic GA follows the traditional literature (see e.g., Holland 1975) and 
starts with a population of solutions consisting of beacons deployed at random positions.  
Solutions were represented as sets of two-dimensional coordinates indicating the location 
of each beacon.  Experiments showed that a large computational effort was required to 
obtain designs of a reasonable quality.  It was also observed that occasionally the GA was 
unable to escape inferior local minima even when allowed to run for an extended amount 
of time.  Our current goal is to overcome these deficiencies with a different heuristic 
approach and compare our results to the GA implementation. 
 

2 Problem Description 

In interior spaces, such as industrial bays or office spaces, where a navigation system for 
robots or autonomous vehicles is being considered, it is necessary to first determine the 
characteristics of the work area that are relevant to the optimization process.  These 
characteristic include the navigation area, beacon area and possible obstacles (as 
described below).  Since beacon capabilities are considered known, the problem consists 
of finding the placement of a minimum number of beacons that maximizes coverage of 
the navigation area while guaranteeing reliability and achieving a desired level of 
accuracy in the position estimations (i.e., a low DOP). 
 
We define three types of areas within the indoor facility: 1) navigation area (Av), 2) 
beacon area (Ab) and 3) obstacles (Ao).  Figure 1 shows a schematic representation of 
these areas.  The navigation area is shown in yellow and represents the space on the floor 
where the vehicle moves and localization services must be provided.  The grid represents 
the area on the ceiling of the facility where beacons could be located (i.e., the beacon 
area).  Finally, the gray areas are obstacles that the vehicle must avoid.  Some obstacles, 
such as walls, reach the ceiling of the facility and interrupt the signals used for 
positioning, acting as discontinuities in the beacon area.  Other obstacles, however, do 
not reach the ceiling and therefore only affect the navigation area.  In general, the 
navigation area does not have to be the same as the beacon area. 
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Figure 1. Schematic representation of a facility with a navigation system 
 
This problem is general in the sense that it can be applied to multilateration processes 
regardless of the technology used to estimate the range between the beacons and the 
mobile device (e.g., RF, UF, IR, UWB or Laser) (Hightower, 2001).  Different 
technologies can be considered within this framework by a precise characterization of the 
transducers used for emission and reception (in terms of patterns of emission, maximum 
range, etc).  In current setting, we consider a sub-centimeter exact ultrasonic positioning 
system where broadband transducers and Golay codes are used to codify the emitted 
signals, allowing increased noise immunity, capability of simultaneous measurements 
and increased precision (Prieto, 2007).  In this system, ranges to the mobile vehicle are 
estimated by measuring times-of-flight (TOFs) of RF-synchronized ultrasonic signals 
traveling from emitters to receivers.  This is a common scheme used in the Robotics 
community for navigation of AGV’s (Hazas and Ward, 2003; YI, 2003). 
 
In our problem, we consider that the beacons will be placed at a fixed height, determined 
by the ceiling of the interior space under consideration.  Therefore, the search for the best 
placement of beacons is restricted to a two-dimensional space, where the beacon’s height, 
zb, takes on a fixed value.  We also assume that the height of the vehicle (or robot) is 
fixed.  The fixed value, zv, is the maximum height that the vehicle could reach in the 
navigation area, as shown in Figure 2. 
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Figure 2. Horizontal range (r) as a function of zb, zv and θ 
 
The horizontal range (r) covered by a beacon is a critical parameter for the optimization 
process.  The horizontal range depends on the minimum sound pressure level (SPL) of 
the ultrasonic signal that is required to produce a reliable estimation of the TOF, and 
consequently, of the range (Minkoff, 1992).  In the situation shown in Figure 2, the SPL 
is given by: 
 

( ) ( )θθ reabs
ref

ref AtAtAt
d

rdSPLrSPL ⋅++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

)(log20)( 10  

 
where SPLref is the SPL (in dB) at an axial distance dref from the transducer, as given in 
the datasheet, the second term corresponds to the attenuation of the ultrasonic signal 
caused by spreading of the wavefront during propagation, and Atabs represents the 
attenuation due to air absorption.  Following Manthey (1992), this attenuation value (in 
dB) may be calculated as: 
 

( ) ( )refabs drdfAt −⋅−= − )(6.1 210  
 
This term dominates for high frequency ultrasonic signals and severely restricts the 
measuring range.  This is the reason that frequencies (f) for indoor localization 
applications are commonly between 20 and 100 kHz. The term ( ) ( )θθ re AtAt ⋅  is the 
product of the directivities of the emitter and receiver patterns, respectively.  These 
values are either given by the manufacturer or are experimentally measured.  The 
relationship between the distance traveled by the ultrasonic wave d(r) and the viewing 
angle θ is given by: 
 

( )22)( vb zzrrd −+=  
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In practical ultrasonic ranging systems, a minimum operating SPLmin is chosen and the 
operating range rmin is determined by solving SPL(rmin) = SPLmin numerically. Thus, the 
beacon coverage is the circle of radius rmin around its position, assuming that no blocking 
obstacle exists in that range. 
 
The horizontal range r is used to calculate the number of beacons available for evaluating 
the DOP at each point of the navigation area.  This calculation is possible as long as the 
point of interest is inside the radius coverage of at least three beacons at the same time; 
otherwise such a point is considered uncovered.  In general, if a given vehicle position 

 is covered by n beacons, we build an n×3 matrix A such that its ith-row is the 
normalized direction vector from the vehicle position to the ith-beacon:  
( vvv zyx ,, )
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where ( )

iii bbb zyx ,,  are the coordinates of the ith beacon and li is the distance between the 

ith beacon and the vehicle, i.e., ),,(),,( vvvbbbi zyxzyxl
iii
−= , as shown in Figure 2.  

Then the DOP is calculated as follows (R. Yarlagadda, 2000): 
 

332211 mmmDOP ++=  
 
where { } 1−== AmM ij  for n = 3 and ( ) 1−

= AAM T  for n > 3.  
 
A solution to the beacon layout problem is given by the set { }nizyx

iii bbb ,,1;,, K==Ω  of 
the coordinates of all beacons included in the design.  The three objectives described in 
the previous section are aggregated in the objective function )(Ωf , to be minimized: 
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To evaluate  efficiently, we consider a grid of nGrid discrete points overlaid on Av.  
In our application, the points in the grid have a separation of 10 centimeters 
(Grid density = 100 points/m

)(Ωf

2).  Then, nGrid is given by: 
 

nGrid = (Grid density)(Av)= 100 Av 
 
Let  be the visibility between beacon i  at location  for  and 
position j  at location  for 

ijV )( ib ),( ii yx ni ,...,2,1=
)( jp ),( jj yx nGridj ,...,2,1= .   is a binary variable 

determined as follows: 
ijV
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Let be the availability matrix at position j, which identifies points in the discretized Av 

 with at least three visible beacons and acceptable DOP value.   is 
also binary and is given by: 

jC
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Then, the average DOP and the sPoints can be expressed as functions of the C values as 
follows: 
 

 

[ ]

[ ]∑

∑

=

== nGrid

j
j

nGrid

j
jj

C

CDOP
DOP

1

1
 

 

[ ]∑
=

−=
nGrid

j
jC sPoints

1
1  

 
The first term in the objective function attempts to minimize DOP , which is the average 
of the DOP values at all the points of the grid that are covered by the current 
configuration.  The second term minimizes the percentage of sPoints, which are those 
positions in the grid where it is not possible to localize a moving vehicle (either due to a 
lack of enough beacons in LOS or DOP values above the desired threshold).  The final 
term minimizes the number of beacons (n) used in the design.  The weights k1, k2 and k3 
are set by the designer and measure the relative importance of the three components of 
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the objective function, which can be described qualitatively as: inaccuracy of the position 
estimation, its unavailability and its cost, respectively.  The objective of the optimization 
process is finding a design that minimizes the weighted sum of these three components. 
 
Since the objective function is based in a known weighted aggregation of objectives, in 
our work, we considered the Conventional Weight Aggregation (CWA) and the Dynamic 
Weight Aggregation (DWA) methods in order to select the values of k1 and k2, according 
with the desired trade-off between inaccuracy and unavailability (Jin, 2001).  
 

CWA assumes a priori knowledge in order to specify an appropriate set of weights.  We 
considered only values of DOP smaller than 10 because larger values diminish notably 
the accuracy of position estimations, resulting in singular areas.  Moreover, we assumed 
that the positioning system has odometric and inertial sensors allowing beaconless 
navigation in small areas.  Therefore, a maximum of 20% of unavailable area was 
allowed.  These considerations allowed us to establish the following relationship between 
k1 and k2 and the maximum inaccuracy and unavailability: 
 

max2max1 lityunavailabikinaccuracyk ⋅=⋅  
2.010 21 ⋅=⋅ kk  

 
Therefore, for 502.0

101 21 ==⇒= kk . 

 
Then, we used the DWA method to assess the performance of our relationship.  In DWA, 
the weights in the objective function are changing periodically during the optimization 
process in order to find several solutions on the Pareto Frontier (PF); set of solutions to a 
multi-objective minimization problem where no improvement can be achieved by 
decreasing one objective without increasing another (Steuer, 1986).  Then, the designer 
selects the efficient solutions according to a desired tradeoff of the objective functions. 
 
Over a square area of 16.81 m2 using 12 beacons, the objective function was minimized 
using the optimization process described in Section 3.2, changing the values of k1 and k2, 
in each search, from k2 >> k1 and vice versa.  In this way, an approximation of the Pareto 
front was found (Figure 3).  We confirmed that desired solutions — i.e., those with small 
unavailable areas and within the DOP threshold — were found when the k2/k1 = 50 
relationship was used; see the red dot on Figure 3.  This solution achieves an average 
DOP of 3.5 (f1 value) and a 16% of unavailability (f2 value).  Ratios of k2/k1>100 tend to 
produce solutions with maximum coverage but poor accuracy, while ratios of k2/k1<20 
produce the opposite effect. 
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Figure 3. Pareto frontier found with DLS optimization process (Section 3.2) by changing 
k1 and k2 according to DWA method and the best solution (red point) with k2/k1=50. 

 
In order to select a reasonable value for k3, the optimization process was first performed 
using only the first two components of the objective function with the preferred weights 
for k1 and k2 (i.e., 1 and 50, respectively).  Starting with 12 beacons, we performed 
searches eliminating one beacon at a time until only four beacons remained.  Then, the 
value of k3 was selected in such a way that the recalculated lower value in the objective 
function, using the three components, corresponded to the best deployment found with a 
desired 98% of coverage.  This is how we arrived to the value of k3 = 20.  However, if we 
want  to be interpreted as the cost in dollars for square meter, this value for k3 is not 
a realistic cost of a beacon, as those used in Prieto (2007).  To make it more realistic, we 
changed k3 from 20 to 200 [$/beacon] and k

)(Ωf

1 and k2 were multiplied by 10 in order to 
maintain the desired balance in the function.  We will show later that the value of k3 is 
not relevant during the optimization process and we only use it to compare solutions 
found by the methods described below. 
 

3 Optimization Processes 

In this section, we describe the two solution methods that are available for the beacon 
layout design problem discussed above.  The first method is based on genetic algorithms 
(GA) and was developed prior to this study.  We provide a brief description of this 
method because we use it for comparison purposes.  We then describe the 
implementation of our diversified local search. 
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3.1 Genetic Algorithm 

To the best of our knowledge, the GA by Roa, et al (2005) is the only existing procedure 
for the problem on hand.  The optimization process starts from an initial solution based 
on locating beacons employing a regular pattern (see Section 3.2.1).  Then, an initial 
population (group of individuals) is formed by randomly perturbing the positions of the 
beacons in the initial solution.  Each individual in the initial population is evaluated, 
where fitness is given by the value of )(Ωf .  Selection and crossover operators are 
applied in order to obtain two new solutions, which are evaluated and added to the 
population. Then, individuals are sorted according to their fitness value and the two worst 
individuals are eliminated from the population.  This process is repeated until a 
termination criterion is satisfied.  Figure 4 shows a sketch of the GA process. 
 

Construct initial solution 
Initialize population randomly around initial solution. 
Evaluate the population with the objective function )(Ωf . 
While (termination criterion not satisfied) 
{ 
 Select two individuals with the selection operator 
 Apply crossover operator in order to obtain two new individuals 
 Evaluate and add the new individuals to the population 
 Sort the individuals of population in ascending )(Ωf  order 
 Eliminate the two worst individuals from the population. 
} 

 
Figure 4. Outline of the GA by Roa, et al (2005) 

 
Individuals in the context of the GA outlined in Figure 4 are beacon layouts.  An 
individual consists of a vector of size n+1; where the first element is a number 
representing the index of individual.  The remaining elements (genes) contain numbers 
that correspond to positions of beacons in Ab.  Figure 5 shows a schematic representation 
of the individuals in a population. 
 

1 
M

et
er

b1 b2

b3 b4

# Ind.    Gene 1   Gene 2  Gene 3   Gene 4

    1           23          45           8            17

     2           19          23          11           27

    m          17          15           8             92

… … … … …

Population

List of random XY coordinates for gene 3
#              X            Y

11          1.456     0.498

… ……

1           4.234     3.498

100         5.074     3.291

… ……

X 

Y

 
 

 b) Population with m 
individuals and four 
genes. 

a) Initial layout with four beacons (red 
circles) and their perturbed locations 
(blue points). 
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Figure 5. Schematic representation of a population of individuals 
 
The population includes all individuals in the search process and is represented by a 
m×(n+1) matrix, where m is the size of the population and n is the number of beacons. 
The initial solution is represented by the red dots in Figure 5a.  The initial population is 
created by randomly selecting 100 layouts, where each beacon is randomly located in a 
square around the initial location.  These locations are shown as blue dots in Figure 5a.  
The 100 possible positions for each beacon are then coded as shown in Figure 5b.  
Individuals are represented by their index and the numbers representing the XY positions 
of the beacons, as shown in the “Population” table in Figure 5b.  Note that when these 
individuals are combined — via crossover operations —in order to create new 
individuals, the positions of the beacons are limited to those coded in the XY list for each 
gene. 
 

3.2 Diversified Local Search Method 

Our new proposal to search for optimal beacon deployments in LPS is based on a 
neighborhood search that includes intensification and diversification phases.  It is 
important to clarify that although we search for optimal layouts, our procedure is 
heuristic in nature and therefore the best layouts found are not known to be optimal in a 
global sense.  The designs represent the best local optimal solutions that our search 
encountered.  The intensification phase is a local search procedure while the 
diversification phase employs memory structures from the tabu search methodology 
(Glover and Laguna, 1997).  The phases are alternated as shown in Figure 6.  This design 
follows the strategies suggested by Kelly, Glover and Laguna (1994) in the context of the 
quadratic assignment problem.  Once the intensification phase reaches a local optimal 
point, the diversification phase is triggered to encourage the search to move to a different 
region of the design space.  The number of steps in the intensification phase varies 
according to the descend trajectory from the solution where the phase initiates.  The 
diversification phase consists of a fixed number of iterations (dSteps).  The process stops 
after a termination criterion is satisfied.  The termination criterion may be given by a 
fixed number of searches or by a time limit.  It is also possible to stop the optimization at 
the current n-level after a design of a specified quality has been found.  In our 
experiments, we perform the inner while-loop of Figure 6 nSearch times. 
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Construct initial solution 
Let n = number of beacons in the initial solution 
while (n ≥ nmin) 
{ 
 while (termination criterion not satisfied) 
 { 
  Perform search intensification 
  Perform dSteps diversification iterations 
 } 
 n = n – 1 
} 

Figure 6. Outline of the optimization process 
 
Figure 6 also shows that the third component of the objective function is handled 
explicitly as a hard constraint during the search.  In other words, every time the 
termination criterion in the inner loop is satisfied, the maximum number of beacons is 
reduced and the search continues.  This process makes the third component of the 
objective function a constant and therefore only the first two components are relevant 
during the search.  The reduction of the number of beacons is achieved by eliminating 
one beacon from the current best solution.  Let  be the best solution found with n 
beacons.  Then, the initial solution for the next application of the intensification phase is 
the result of eliminating the beacon that causes the smallest increase in the objective 
function value of the current best solution.  Mathematically, we look for the beacon that 
minimizes 

*
nΩ

( ) ( )*
1 nn ff Ω−Ω −  when setting k3 = 0 (i.e., when ignoring the cost of the 

beacons).  The outcome of this procedure is a set of solutions that are the best designs 
found for a given number of beacons.  The maximum number of beacons is determined 
by the initial solution and the minimum number is given by nmin. 
 

3.2.1 Initial Solution 
The initial solution is obtained by applying a systematic pattern for placing beacons in the 
beacon area.  The construction procedure considers two patterns, square and triangular, as 
shown in Figure 7.  The separation of the beacons in both patterns is determined by a 
minimum availability value (aMin).  That is, the initial design should be such that 

aMin
nGrid
sPoints

≥⎟
⎠
⎞

⎜
⎝
⎛ −1 . 
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 a) Triangular b) Square 

Figure 7. Layout patterns for initial solutions 

 
Two solutions are constructed, one with each pattern.  The design with the fewer number 
of beacons is chosen.  A second phase of the procedure attempts to eliminate redundant 
beacons from the chosen design.  The beacons are sequentially considered and 
eliminations occur as long as the design meets the minimum availability value.  The 
objective function value is calculated and the search is initiated from the resulting beacon 
configuration. 
 

3.2.2 Intensification Phase 

This phase consists of a local search based on the neighborhood depicted in Figure 8. The 
black circle represents a beacon under consideration and the gray circles represent the 
trial positions.  We consider 8 possible directions for moving the current beacon.  The 
directions are equally space at 45-degree angles from 0 to 315 degrees.  Five different 
positions are tried in each direction.  The positions are 10 centimeters apart, resulting in a 
maximum move of 50 centimeters in any of the eight directions. 
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Figure 8. Neighborhood of a given beacon 

 
The neighborhood is explored from the outside in.  That is, the positions that are 50 
centimeters away from the current position are explored first, followed by the positions 
that are 40 centimeters away, and so on.  After the eight trial positions at a given distance 
are explored, the beacon is immediately moved if an improving position is found.  
Otherwise, the neighborhood search moves to the next (closer) set of eight positions.  
This means that a maximum of 40 positions are explored when either no improving 
neighbor position is found or the improving position is in the set of the eight closest 
positions.  The beacons in the current design are considered one by one in a random 
order.  This order changes ever time all the beacons have been considered.  If all beacons 
are considered and none is moved, the maximum moving distance of 50 centimeters is 
reduced by 10 centimeters (and the spacing between the five concentric circles shown in 
Figure 8 is adjusted accordingly).  The process finishes when the maximum distance 
reaches zero.  At this point, all the beacons are locked in their positions and the solution 
is considered a local optimum with respect to our neighborhood. 
 
During preliminary experimentation, we tested the idea of increasing the number of 
search directions when the search stalls.  In particular, once the local search was unable 
to find better positions for any of the beacons, the maximum move was set to 30 
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centimeters and the number of directions was increased.  This strategy was not as 
effective as the one described above and therefore we fixed the number of directions to 
eight and systematically reduced the length of the moves in an attempt to find the 
(locally) best positions for the beacons. 
 

3.2.3 Diversification Phase 

This phase starts from the last local optimal design found in the intensification phase.  
The main goal of this phase is to move the beacons away from their current positions.  
Instead of applying a totally random perturbation to the current design, this phase 
employs a more systematic approach to escape the current local optimum in search of a 
global optimal beacon layout.  This phase is also based on the neighborhood depicted in 
Figure 8.  The process works as shown in Figure 9. 
 

while (number of steps ≤ dSteps) 
{ 
 Order beacons randomly, where bi is the ith beacon in the list 
 for (i = 1, …, n) 
 { 
  Evaluate the neighbor positions for beacon bi
  Move beacon bi to its best neighbor position 
  Update the current and best objective function value 
  Update the tabu memory structure 
 } 
} 

Figure 9. Diversification phase 
 
Each iteration of the diversification phase consists of moving all the beacons to a new 
position.  The procedure uses a short-term memory structure that classifies certain moves 
as tabu.  The structure can be thought of as consisting of n tabu matrices of size t×4, one 
for each beacon, where t is the tabu tenure.  A row in the tabu matrix contains four 
values, consisting of the two pairs of xy coordinates that correspond to the forbidden 
move.  Initially, there are no forbidden (i.e., tabu) moves and therefore the matrices are 
blank.  Suppose that at iteration 1 the ith beacon is moved from (2.3, 5.7) to (2.38, 5.78) 
then the first row of the ith matrix will be updated to (2.38, 5.78, 2.3, 5.7) indicating that 
the move from (2.38, 5.78) to (2.3, 5.7) is forbidden.  Each tabu matrix is a circular list 
and therefore after t iterations all rows are updated.  This means that a move is forbidden 
for only t iterations. 
 
The while-loop in Figure 9 first creates a random ordering of the beacons.  Then, each 
beacon is considered following the current random order.  The entire neighborhood of the 
beacon under consideration is evaluated and the best neighbor position is identified.  The 
best neighbor position must meet one of the two following conditions: 
 

1. The move from the current position to the neighbor position must be 
non-tabu. 
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2. If the move from the current position to the neighbor position is tabu 

then the objective function value of the beacon layout after the move 
should be better than the best objective function value found during 
the entire search. 

 
The best position from all those meeting one of the two previous conditions is selected 
and the beacon is moved to it.  The move may result in a deterioration of the objective 
function value of the current solution.  In fact, such deterioration is guaranteed in the first 
iteration of the diversification phase given that the initial beacon layout is a local 
optimum with respect to the neighborhood that is used in both phases.  After a few 
iterations of the diversification phase, however, it is possible to find improving search 
trajectories.  Although we are mainly concern with inducing diversification, this phase 
has an element of intensification given by the rule that chooses the “best” available move 
at each step. 
 
After the move, the objective function value of the current solution must be updated.  If 
the move is to a new best design then the best solution and its corresponding objective 
function value must be updated as well.  Finally, the tabu memory structures are updated 
and the process is repeated until all beacons are considered.  The diversification phase 
stops after dSteps.  No adjustment of the neighborhood is performed during this phase 
and the moving distance for the beacons is set to 30 centimeters. 
 
We also experimented with a variant of the diversification phase that delayed the 
movement of beacons until all of the neighborhoods were explored.  In this variant, a 
move is chosen only after all of the beacons are considered and therefore each iteration is 
considerably more computationally expensive than the procedure outlined in Figure 9.  In 
our preliminary experimentation we determined that extra effort related to find the best 
overall move did not result in improved outcomes.  Hence, the experiments reported in 
the next section focus on the performance of the procedure shown in Figure 9. 
 

4 Experimental Results 

In this section, we describe the experiments that we performed to test the proposed 
optimization procedure.  We created three initial test cases, whose characteristics are 
summarized in Table 1. 
 

Test Shape Area  
(Ab=Av) [m2] 

Radius 
(rmin)[m] 

Beacons 
nmin

1 Square 16.81 2 4 
2 L 14.91 1.4 10 
3 Horseshoe 14.01 1.28 10 

Table 1. Characteristics of test cases 
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The height of the vehicle (zv) is set at 2 meters and the beacons are placed at 4 meters 
(i.e., zb = 4).  In each test case, we consider that the beacon area (Ab) and navigation area 
(Av) have the same shape.  We use the following values for the search parameter: 
 

k1 = 10 
k2 = 500 
k3 = 200 
aMin = 100% 
dSteps = 12 
nSearch = 3 
t = 8 

 
Tables 2 to 4 show the values of each component of the objective function found for the 
designs with number of beacons ranging from the one in the initial design to the specified 
nmin.  The initial designs with 12, 18 and 17 beacons for cases 1, 2 and 3, respectively, 
guarantee 100% of availability (as specified by the aMin value).  Since the cost of the 
design is fixed for a given number of beacons, the third component of objective function 
does not play a role during the optimization process.  In other words, the search is 
completely driven by the tradeoff between accuracy and availability, as specified by the 
values of k1 and k2.  The value of k3 is therefore used only to obtain an overall evaluation 
of the best designs found for each value of n.  In Tables 2-4, GA refers to the genetic 
algorithm in Roa, et al. (2005) and DLS to our diversified local search, both implemented 
in Matlab.  We ran DLS with the parameters specified above and recorded the total time 
used during the optimization process.  We then ran the GA for the same amount of time 
(approximately 30 CPU minutes on a PC with an Intel processor at 1.5GHz and 512 of 
RAM). 
 

 Number of beacons (n) 
 12 11 10 9 8 7 6 5 4 
GA: f(Ω) 166.24 153.97 148.54 148.45 160.53 181.68 202.68 241.79 309.76 
Inaccuracy f1 (DOP)  2.31 2.25 2.42 2.70 3.35 3.38 4.83 4.34 7.21 
Unavailability f2.Av [m2] 0.01 0.02 0.18 0.48 1.07 2.17 2.79 4.67 6.39 
DLS: f(Ω) 163.36 153.13 144.94 144.12 155.52 172.37 198.97 238.91 296.18 
Inaccuracy f1 (DOP) 2.05 2.19 2.41 2.84 3.89 3.85 4.75 4.46 7.90 
Unavailability f2.Av [m2] 0.00 0.01 0.06 0.29 0.72 1.70 2.69 4.53 5.70 
Cost [$/m2] 142.77 130.87 118.97 107.07 95.18 83.28 71.38 59.48 47.59 

Table 2. Objective function values of designs for test case 1 
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 Number of beacons (n) 
 18 17 16 15 14 13 12 11 10 
GA: f(Ω) 271.79 258.54 247.19 237.91 229.99 231.23 236.41 233.92 264.67 
Inaccuracy f1 (DOP) 3.03 3.05 3.22 3.43 3.78 4.17 4.45 4.88 5.91 
Unavailability f2.Av [m2] 0.00 0.00 0.01 0.07 0.13 0.45 0.92 1.12 2.13 
DLS: f(Ω) 269.26 257.18 245.47 234.44 226.52 223.20 223.57 228.40 245.14 
Inaccuracy f1 (DOP) 2.78 2.91 3.08 3.28 3.70 4.44 5.12 5.60 6.47 
Unavailability f2.Av [m2] 0.00 0.00 0.00 0.01 0.05 0.13 0.34 0.74 1.38 
Cost [$/m2] 241.44 228.03 214.62 201.20 187.79 174.37 160.96 147.55 134.13 

Table 3. Objective function values of designs for test case 2 

 
 

 Number of beacons (n) 
 17 16 15 14 13 12 11 10 

GA: f(Ω) 284.24 273.31 272.28 278.73 297.79 302.68 329.47 340.11 
Inaccuracy f1 (DOP) 3.87 3.84 4.24 4.63 4.72 5.50 5.32 6.24 
Unavailability f2.Av [m2] 0.08 0.19 0.46 0.96 1.93 2.27 3.55 4.02 
DLS: f(Ω) 278.33 269.82 263.99 268.20 275.43 292.11 313.52 333.89 
Inaccuracy f1 (DOP) 3.56 3.89 4.16 5.26 5.63 5.97 5.47 6.40 
Unavailability f2.Av [m2]  0.00 0.07 0.23 0.44 0.94 1.71 2.85 3.56 
Cost [$/m2] 242.68 228.40 214.13 199.85 185.58 171.30 157.03 142.75 

Table 4. Objective function values of designs for test case 3 
 
Tables 2, 3 and 4 show the merit of the proposed procedure in terms of finding designs 
that in all cases provide higher levels of accuracy and availability.  Furthermore, DLS 
converges to high-quality designs at a much faster rate than GA, as illustrated in Figure 
10.  This figure shows the value of the objective function corresponding to the best 
solution found by each procedure for the Horseshoe case with 15 beacons.  In this run, we 
allowed both procedures to go beyond the 30-minute mark in order to observe their long-
term behavior.  DLS was ran with nSearch = 6, resulting in 80 minutes of computational 
time.  The GA was then run for the same amount of time. 
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Figure 10. Performance curves for DLS and GA for Horseshoe with n = 15 
 
Figure 10 shows the aggressive nature of DLS.  The search rapidly descends to solutions 
with objective function values that are significantly better than those that the GA finds in 
the initial stages of the search (e.g., within the first 10 minutes of processing time).  Even 
after the 30-minute limit established in our original experiment, DLS is capable of 
improving the best solution at a faster rate than the GA.  The final solutions found after 
the stopping criteria are satisfied also favor DLS in terms of the corresponding objective 
function values.  Figure 11 shows the designs found at the end of the search depicted in 
Figure 10.  The red dots in Figure 11 indicate the 0.46 m2 and 0.23 m2 of area where the 
system is not available in the GA and DLS designs, respectively.  It is interesting to note 
that, given enough time, the procedures arrive at somewhat similar designs. 
 

   
 a) GA Design b) DLS Design 

Figure 11. Designs for the Horseshoe case with 15 beacons. The red dots indicate the 
unavailable area 
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We performed one final experiment for which we constructed an area of 69.23 m2 with 
walls and obstacles (test case 4).  We used the same parameter values as indicated above 
and set nmin = 40.  The characteristics of the solutions found during the search are shown 
in Table 5. 
 

No. of Beacons 
(n) 

f(Ω) 
[$/m2] 

Inaccuracy  

1f  (DOP) 
Unavailability Avf ⋅2 [m2] Cost 

33 fk ⋅  [$/m2] 
61 194.00 1.77 0 176.22 
60 191.31 1.79 0 173.33 
59 188.63 1.81 0 170.44 
58 185.90 1.83 0 167.55 
57 183.25 1.85 0 164.66 
56 180.58 1.88 0 161.77 
55 177.98 1.90 0 158.89 
54 175.36 1.93 0 156.00 
53 172.72 1.96 0 153.11 
52 170.16 1.99 0 150.22 
51 167.60 2.02 0 147.33 
50 165.18 2.07 0 144.44 
49 162.95 2.13 0.01 141.55 
48 160.33 2.15 0.01 138.66 
47 158.66 2.19 0.13 135.77 
46 157.03 2.29 0.16 132.89 
45 155.43 2.34 0.28 130.00 
44 153.93 2.46 0.30 127.11 
43 152.74 2.60 0.34 124.22 
42 152.14 2.70 0.52 121.33 
41 156.83 2.65 1.64 118.44 
40 159.01 2.90 2.00 115.55 

Table 5. Results of the experiment with test case 4 
 
The results in Table 5 indicate that the best solution found (according to the weights used 
for the objective function value) corresponds to the design with 42 beacons.  The 
resulting total cost is $121.33 and the solution has reasonable values of inaccuracy and 
unavailability.  The actual design is shown in Figure 12.  The red dots in the lower 
corners of the design indicate the 0.52 m2 of area where positioning is not available. 
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Figure 12. Best design with 42 beacons for test case 4 

 
The coverage calculations in test case 4 take into consideration that the navigation and 
beacon areas are different.  In particular, the navigation area is delimited by the red lines 
and the beacon area is the larger surface with the white background.  The wide dark bars 
are walls that are neither part of the navigation area nor the beacon area.  The process to 
find the design in Figure 12 required approximately 28 hours. 
 

5 Conclusions 

We have described the development of an optimization procedure for the problem of 
finding the optimal location of beacons in an indoor positioning facility.  The procedure 
consists of two alternating phases that result in an aggressive search trajectory toward 
high-quality designs.  These designs avoid singularities and provide coverage with high 
accuracy.  These characteristics are important for the deployment of sensor networks with 
minimum infrastructure costs.  Our tests show that the proposed procedure is more 
effective than the only other one that currently exists for this engineering design problem.  
We have created a set of 4 test cases that show the merit of our proposal.  We believe that 
there is room for improvement regarding the effectiveness and efficiency of solution 
procedures for this problem but, at the same time, we have set a benchmark that we hope 
will motivate future research. 
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