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This paper studies the problem of determining the position of beacon nodes in Local Posi-
tioning Systems (LPSs), for which there are no inter-beacon distance measurements avail-
able and neither the mobile node nor any of the stationary nodes have positioning or
odometry information. The common solution is implemented using a mobile node capable
of measuring its distance to the stationary beacon nodes within a sensing radius. Many
authors have implemented heuristic methods based on optimization algorithms to solve
the problem. However, such methods require a good initial estimation of the node posi-
tions in order to find the correct solution. In this paper we present a new method to calcu-
late the inter-beacon distances, and hence the beacons positions, based in the linearization
of the trilateration equations into a closed-form solution which does not require any
approximate initial estimation. The simulations and field evaluations show a good estima-
tion of the beacon node positions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

There are many location-aware applications, such as ob-
ject position tracking in smart spaces, and personal
navigation, that require systems for indoor localization.
The Global Positioning System (GPS) is not available in-
doors, therefore new localization technologies are required.
Localization systems designed to work in indoor environ-
ments are known as Local Positioning Systems (LPSs) [1].
These systems require the installation of several nodes at
fixed positions (called beacon nodes) in the indoor environ-
ment. Beacon nodes are usually positioned at the ceiling or
on walls, and a mobile node is attached to the person or ob-
ject to locate. In order to locate the mobile node using the
trilateration method the position of the beacons must be
known in advance. The determination of the beacons posi-
tion is usually done manually by measuring the distance to
the two closest walls of the building using measuring tapes
. All rights reserved.

: +34 918717050.
(J. Guevara), antonio.
or ultrasonic/laser rangers. This method is cumbersome
and error prone, therefore different techniques have been
proposed to address the problem of obtaining automati-
cally the position of the beacons, also known as the auto-
calibration or auto-localization problem.

Typical auto-localization solutions are based on mea-
suring distances from a group of localized nodes, or a mo-
bile node at several known positions, to the beacons with
unknown position and then performing a inverse trilatera-
tion (locating the beacons using the mobile node). This
method of inverse positioning states that with enough
measurements all the beacons can be localized by trilater-
ation techniques [2]. In [3] four different mobile node posi-
tions are used to locate the beacon nodes of a 3D LPS. In [4]
three nodes with known positions are required plus a
group of nodes with unknown positions. In [5] only the rel-
ative distances between four nodes mounted on a mobile
robot are required. These methods, however, require an
external localization system to obtain the position of the
mobile node at each static location, which is not always
available in indoor environments.

A more generic problem is addressed by assuming that
no information of the position of any node is known. In
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these cases the only available data are the distance mea-
surements between the beacons and the mobile node. Duff
and Muller [6] used a nonlinear least-square optimization
algorithm to locate the beacons, where the objective func-
tions were the distance equations and the variables were
the coordinates of all nodes. Since a first position estima-
tion of all nodes is required, as initial conditions for the
algorithm, a trial and error method was used by randomly
generating those conditions and choosing the best solution.

In [7,8] an Extended Kalman Filter and an H-infinite fil-
ter are used respectively to obtain the position of the bea-
cons and the mobile node. In both cases an approximate
initial position estimation of the beacons is obtained using
dead-reckoning information of the mobile node (posi-
tioned on a mobile vehicle) and measured node to beacon
ranges. In [9], a distance matrix is formed with the range
measurements between beacons and the mobile node at
different locations. With that information a rough approx-
imation of the inter-beacon ranges is obtained using an
interpolation scheme. However, these initial distance esti-
mates are not precise enough to be used to locate the bea-
cons. Therefore, a heuristic optimization method that uses
a non-linear objective function is previously carried out.

In the present paper we propose a new closed-form
solution for the position estimation of the beacons that
neither requires a trial and error approximation (i.e., ran-
domly generated positions) nor any external positioning
information (such as dead-reckoning data). Section 2 de-
scribes the auto-localization problem when no position
information of any node is known. In Section 3 a new
method to locate three beacon nodes without initial esti-
mations is presented. In Section 4 the method is expanded
for any number of beacons. The proposed solution is then
evaluated by simulation in Section 5, and also experimen-
tally on an ultrasonic 3D LPS system in Section 6.

2. The auto-localization problem

Fig. 1 shows a typical configuration of a LPS, composed
by a group of four static nodes Ni, i = 1, . . . , 4, called beacon
N1 (N1x,N1y,N1z)

Z

X

Y

N2 (N2x,N2y,N2z)

N3 (N3x,N3y,N3z)
N4 (N4x,N4y,N4z)

N5 (N5x,N5y,N5z)

Fig. 1. 3D local positioning system.
nodes, and one mobile node N5. If all the beacons’ positions
are known the mobile node coordinates (N5x, N5y, N5z) can
be calculated using the distance equations, known as trila-
teration or multilateration equations:

kN5 � N1k ¼ d15;

kN5 � N2k ¼ d25;

..

.

kN5 � N4k ¼ d45; ð1Þ

where di5, i = 1, . . . , 4 is the distance between the beacon Ni

and the mobile node N5.
The objective of auto-localization algorithms is to ob-

tain the position of all nodes, beacons and mobile, using
only a group of distance measurements between the bea-
cons and the mobile node. The distance measurements
are obtained at different unknown positions of the mobile
node. In most LPS inter-beacon distances are not available
since they are only designed to measure their distance to
the mobile node. Besides, no external localization system
is used, so no positioning or odometric information is
available in any node.

The typical approach used for auto-localization is to for-
mulate it as an optimization problem, where the objective
function to be minimized includes the residuals of the dis-
tance Eq. (1) and the variables in the search space are the
coordinates of all the nodes. In principle, the problem is
solvable by obtaining more distance measurements than
the number of unknown variables. However, such direct
approach, known as degrees of freedom analysis, does
not guarantee a unique solution in a system of nonlinear
equations, such as the trilateration equations. Priyantha
et al. [10] introduced the concept of rigidity in LPS systems
to develop a method that ensures a unique solution of the
auto-localization problem. The process requires a starting
subset of nodes (a starting group of beacons and mobile
nodes) that have been verified to have a unique solution.
Then, an incremental process of adding more nodes, based
in the rigidity theory, is used to preserve the uniqueness of
the solution. Priyantha also developed a group of move-
ment strategies to obtain the starting subset of nodes,
but these strategies were only justified using a degrees of
freedom analysis. In [11] the precise conditions for obtain-
ing different initial subsets of nodes with a unique solution
were presented and justified using rigidity theory.

Another problem presented with the optimization algo-
rithms, and also with Bayesian methods, is that their con-
vergence depend heavily on the initial conditions used.
Here we propose a new method based in the linearization
of the trilateration equations by expanding these equations
and grouping all nonlinear terms in additional variables,
therefore circumventing the convergence problem.
3. Linear solution of the auto-localization problem for
three beacons

The linearization of the trilateration equations is not an
easy task. The equations are nonlinear and the only data
available are the distances between the beacons and the
mobile node. Therefore, in order to obtain a linear set of
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equations, it will be convenient to restrain some of the
conditions of the auto-localization problem. In the present
paper the case where all the beacons nodes are located in a
plane parallel to the plane containing the mobile node tra-
jectory is considered. Such configuration is very common
in LPS systems, for example when all the beacons are lo-
cated on the ceiling, and the mobile node movement is
made at an approximately constant height from the floor.
For this particular case the conditions for a solvable initial
subset of three beacon nodes are obtained based in [11],
where at least four nonaligned mobile positions are
required.

3.1. Linearization of the trilateration equations for three
beacons

Fig. 2 shows the chosen initial subset composed of the
beacon nodes Ni, i = 1, 2, 3 and the four measurement
points Ni, i = 4, . . . , 7 from the mobile node path. From
now on, the measurement points of the mobile node will
be referred as virtual nodes. Without loss of generality, a
coordinate system can be defined using the beacon nodes
where the coordinates of N1 are (0, 0, 0), N2 are (N2x, 0, 0)
and N3 are (N3x, N3y, 0). Then, the trilateration equations
can be rewritten as a function of two groups of distance
measurements: the inter-beacon distances d12, d13, d23

and the volume of the tetrahedron Vt (formed by the bea-
cons and any virtual node) which are unknown variables,
and the distances between beacon nodes and virtual nodes
d14, d24, d34, . . . , which are the available data. Appendix A
shows that the trilateration equations can be expressed
in the linear form AX = B where:

A ¼

d2
34 d2

24 d2
14 D324D214 �D314D214 �1

d2
35 d2

25 d2
15 D325D215 �D315D215 �1

..

. ..
. ..

. ..
. ..

. ..
.

d2
39 d2

29 d2
19 D329D219 �D319D219 �1

2
666664

3
777775; ð2Þ

Dijk ¼ d2
ik � d2

jk; i; j ¼ 1;2;3 k ¼ 4;5; . . . ;9 ð3Þ
d12

d13

d23

N1(0,0,0)

N3(N3x,N3y,0)

N2(N2x,0,0)

N4(N4x,N4y,z)

N5(N5x,N5y,z)

d14

d24

d34

Fig. 2. Solvable node subset composed by three beacon nodes and four
virtual nodes on a plane.
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B ¼

D314D324

D315D325

..

.

D319D329

2
66664

3
77775: ð5Þ

The matrix A and the vector B are composed of the distance
measurements from the virtual nodes. The vector X includes
the unknown inter-beacon distances. Since the linearization
process added more variables, six instead of four virtual
nodes are required to solve the equations. Once X is obtained
the unknown variables d12, d13, d23 can be calculated with:

d12 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

X4
þ X3

X5

s
;

d13 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 þ

X3

X5

s
;

d23 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 þ

X2

X4

s
: ð6Þ
3.2. 2D beacon localization for three beacons

Once the inter-beacon distances are determined, the
beacon nodes coordinates can be calculated using A.6,
A.10 and A.11 from Appendix A:

N1 ¼ ð0;0Þ;
N2 ¼ ðd12;0Þ;

N3 ¼
d2

12 þ d2
13 � d2

23

2d12
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

13 �
d2

12 þ d2
13 � d2

23

2d12

 !2
vuut

0
B@

1
CA:
ð7Þ

The global coordinate system is defined so that the Y coor-
dinate of the third beacon is always positive. With the pro-
posed equations an estimated position of the initial subset
of beacon nodes can be obtained based only on range mea-
surements. Before expanding the problem to more beacons
we will evaluate the error propagated from the distance
measurements in the linearized equations.

3.3. Sensitivity analysis of the linearized equations

The solution of the linearized equations is affected by the
errors in the measured distances used in the matrices A and
B. The magnitude and type of error depends on the technol-
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ogy used in the LPS system. The algebraical manipulation
applied to the trilateration equations further increases the
complexity of the error propagation analysis. Consider the
case where the distance measurements are given by

dij ¼ dij þ �; ð8Þ

where dij is the true distance between node i and j, and � is
the measurement error modeled as a zero mean Gaussian
distribution with variance r2. Since matrices A and B are
composed by the squared measured distances, the resultant
error distribution is not Gaussian, though it can be modelled
as such using a first order Taylor series expansion [12]:

var d2
ij

� �
� 4d2

ijr
2: ð9Þ

Therefore, the errors, or perturbations, present on matrices A
and B are expected to increase with the distance between
measured nodes. Overall, we can obtain an upper bound of
the error dX originated from the perturbation in the matrices
A and B based on the condition number j(A) = kAkkA�1k [13].
By considering that the perturbation is small compared to
the elements of matrix A so kA�1kkdAk < 1 we have that:

kdXk
kXk 6 jðAÞ kdAk

kAk þ
kdBk
kBk

� �
; ð10Þ

where k � k represents the matrix norm.
Although the condition number overestimates the mag-

nitude of the solution’s error, since (10) is an upper bound,
a large condition number still shows a greater sensitivity
to the errors on matrices A and B. Therefore, a condition
number of 104 is used in our proposed algorithm in order
to avoid ill-conditioned solutions. This value is used to vali-
date a given solution obtained by the linearized equations,
any solution with a higher condition number is discarded.
Notice that the condition number does not provide a direct
upper bound on the estimated inter-beacon distances error,
but rather on the variables defined on (4). The inter-beacon
distances error is related with the condition number but not
proportionally (e.g., a condition number of 10 does not mean
that the inter-beacon distances will have up to ten times the
error of the range measurements). Therefore, the maximum
value of the condition number was chosen by tests.

In our tests we found that the condition number of the
linearized equations can be reduced by subtracting all
equations by the last one. This procedure is based on the
centering method which is used to improve the condition
number of a given matrix. In this method the matrix A is
reduced by dropping the column of ones and subtracting
the mean (or other typical value) from the remaining col-
umns [18]. We can achieve this by locating the last virtual
node near the center of the mobile node path in order to
subtract the mean of the columns. The final auto-localiza-
tion Eqs. (11)–(13) are expressed as:
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where Dijk is defined in (3). The solution of the inter-bea-
con distances d12d13 and d23 are the same specified in (6).

4. Auto-localization algorithm for more than three
beacons

In this section the auto-localization problem when
there are more than three beacon nodes is considered.
Our approach is very straightforward, we move the mobile
node in order to obtain as many inter-beacon distances as
possible, using the equations proposed in Section 3. Since it
is assumed that the beacons lie on a plane, their positions
can be solved using a 2D localization algorithm. A flow-
chart of the proposed algorithm is shown on Fig. 3.

4.1. Calculation of multiple inter-beacon distances

First the mobile node is moved on a plane trying to obtain
at least m measurement distances shared by the beacon
nodes where, based in (13) and (11), m is at least six,
although adding redundant measurements improves the
estimation. The path chosen in this paper is a circular route
plus a measurement point at its center. The circular route
was chosen to avoid aligned points and the point at its center
to improve the condition number when applying the center-
ing method of Eqs. (11)–(13). On large areas, or if the nodes’
range is limited, multiple paths can be required. The goal is
to obtain all possible inter-beacon distances applying the
linearized equations on subsets of three beacons. Every sub-
set is tested to confirm it shares distance measurements
with m virtual nodes or more. If so, the respective inter-bea-
con distances are calculated. To validate the obtained dis-
tances, the condition number of the matrix A is verified to
be less than our defined threshold of 104.

Once the inter-beacon distances are validated, another
three beacon subset is chosen. The process is repeated until
every possible subset is evaluated. Since in the process a gi-
ven pair of beacons is chosen more than once, multiple dis-
tance estimations for each pair of beacons can be obtained.
In these cases the mean of all distance estimations is used.
Once all groups of three beacons are evaluated, a 2D local-
ization algorithm is used to locate every beacon position.

4.2. 2D beacon localization for more than three beacons

There are several localization methods based on range
measurements that can be employed to determine the bea-
cons’ position, such as the iterative trilateration. This
method requires a group of anchor nodes with known
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Fig. 3. Linearized auto-localization algorithm for more than three
beacons.
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positions which are used to locate other beacons within
range. Later the new located beacons are used as anchors
to locate more beacons. However, as the number of bea-
cons increases the accumulated error in the beacons’ posi-
tion estimation increases [14]. A method to compute all
beacons’ positions simultaneously is the MDS-MAP which
is based in Multi-Dimensional Scaling (MDS). Since this
method uses all inter-beacon data between unlocated bea-
cons, as well as between anchors and unlocated nodes, it
performs better than iterative trilateration [15]. However,
MDS-MAP requires all inter-beacon distance measure-
ments and its performance depends on the quality of those
measurements. For large localization areas it is difficult to
move the mobile node in a path were all beacons are in
range, therefore some inter-beacon distances must be esti-
mated using the nearest path between those beacons. The
number of hops used to estimate the inter-beacon mea-
surements has a negative impact in the precision of such
estimation. To avoid this problem, a modification proposed
in [16], known as MDS-MAP (p), locates the beacons in lo-
cal maps and later merges them in a global map containing
all beacons. The basic idea is to use local maps with a lim-
ited number of hops. A modification of the MDS-MAP (p),
known as LaMSM [17], further restricts the local maps to
beacons that are fully connected. In this case no distance
estimation by nearest path is necessary.
5. Algorithm analysis

In order to evaluate the performance of the proposed
method, an LPS was simulated using MATLAB. The simula-
tion is also used to choose two components of the algo-
rithm not fully defined in Section 4: the mobile node
path and the 2D localization algorithm used to locate the
beacons once the inter-beacon distances are obtained. In
the following simulations, unless stated different, the rang-
ing data was generated with an additive Gaussian noise
with zero mean and a standard deviation of 1 cm. This
standard deviation was chosen based on the precision typ-
ically obtained with ultrasonic LPSs [19]. All simulations
were performed 100 times.
5.1. Mobile node path analysis

The basic conditions for the mobile node path were pre-
sented in Section 3: at least six noncollinear measurement
points on a plane. To avoid aligned points, a circular path is
used plus a measurement point at its center. The best
parameters of such path: path radius r, the number of vir-
tual nodes n, and the height h from the nodes plane to the
beacons plane are evaluated using the node configuration
shown in Fig. 4. The default values used for these parame-
ters are: r ¼ 1:5ffiffi

2
p m, n = 12 and h = 2 m. In all these tests three

different beacon distributions N1;N2;N
0
3

� �
, ½N1;N2;N3;N4�,

and [N1, N2, N3, N4, N5] are simulated.
In Fig. 5a we evaluate the inter-beacon distance mean

error with different path radii. Since the error on the matri-
ces of the linearized equations increase with the range dis-
tance, it was expected that the best radius value will be the
one that minimized the distances from each virtual node to
all beacons. However, the simulations show that the best
path is the one that encloses the beacon nodes even with
a radius much bigger than the inter-beacon distances.
We observe that for very small radius the mobile node
positions are too close and not much information is ob-
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tained with the measurements (as if we were measuring
from only one mobile position). As the radius increases
more information is obtained (the farther the points the
more information we obtain). However, (9) shows that as
the distance between beacons and the mobile increases
the precision of the solution diminishes. So a mobile trajec-
tory with big radius that does not place the mobile too far
from the beacons is ideal. As observed, for this particular
configuration, increasing the radius over 3 m also increases
slowly the distance estimation error.

Another condition evaluated in this section is the num-
ber of virtual nodes used in the path. As seen in Fig. 5b the
estimation of the inter-beacons distances improves with
more redundant information obtained by more virtual
nodes. However, it seems that the improvement obtained
per added node decreases noticeably for more than 15 vir-
tual nodes.

We finally evaluated the distance (height) between the
beacons plane and the mobile path plane. As expected, the
closer the virtual nodes get to the beacons the better is the
solution. In this case, the distance between beacons and
mobile plane will be limited by the emission/reception
pattern of the nodes, since it is required that all points
are visible to all beacons.

5.2. 2D localization algorithm analysis

To evaluate the localization methods aforementioned in
Section 4.2 we simulate a LPS composed by 49 beacons de-
ployed on an area of 9 m � 9 m as shown in Fig. 6. We use a
circular path for each group of nine beacons to obtain the
inter-beacon distances between nearby beacons. The path
is composed of 12 virtual nodes and has a radius of 3ffiffi

2
p m

in order to encircle the beacons in each group. We limit
the measurement range of the mobile node (4, 5 and 9 m)
to obtain a different number of inter-beacon distances.
Our goal is to verify which method performs better regard-
less of the number of inter-beacon distances available.

In Fig. 7 the cumulative error of the estimated beacons’
position is presented for three different range limited
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N3(0,1.5) N4(1.5,1.5)
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Fig. 4. Configuration used to evaluate the height h, radius r, and number
of virtual nodes n used in the mobile node path. Three beacon groups
evaluated: ½N1;N2;N
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Fig. 5. Analysis of the inter-beacon distance error as a function of the
mobile node path parameters and for three different beacon distributions.
measurements. In Fig. 7a the range limit simulated is
9 m, therefore almost all inter-beacon distances are ob-
tained. It can be seen that the trilateration method per-
forms worst because of its accumulation of error. The
performance of LaMSM and MDS-MAP (p) is almost the
same, obtaining location errors under 4 cm on 90 % of the
beacons. MDS-MAP performs slightly worst than the other
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MDS methods obtaining location errors under 5 cm on 90%
of the beacons. It seems that the lack of some inter-beacon
distances, even a small number, affects the MDS estima-
tion. This can be further observed in Fig. 7b where the limit
range is 5 m. In this case with less inter-beacon distances
available, the trilateration algorithm performs better than
the MDS-MAP (errors on 90% of the beacons under 12 cm
for the trilateration method, 15.5 cm for MDS-MAP). Final-
ly, in Fig. 7c a range limit of 4 m is simulated. In this case
the MDS-MAP (p) still performs better than the MDS-
MAP, but not as good as the LaMSM method (errors on
90% of the beacons under 17 cm for MDS-MAP (p) and
13 cm for the LaMSM). The LaMSM method does decrease
its performance compared with the previous simulations
but it is still better than the other algorithms.

On Fig. 8 the cumulative error at 90% is shown for dif-
ferent localization areas keeping the distance between
beacons constant at 1.5 m. The simulated areas in m2 are:
[9, 18, 36, 54, 81, 108] and the corresponding number of
beacons are: [9, 15, 25, 35, 49, 63]. The range limit used
on this test is 5 m.

As expected, for small areas all MDS based methods
perform better than the trilateration. Since most inter-bea-
cons distances are available, the MDS algorithms have a
better distribution of the errors compared with the accu-
mulative effect showed by the iterative trilateration. As
the area increases, and more inter-beacon distances must
be estimated by hops, the MDS-MAP rapidly decreases its
performance. When only one hop is required for the bea-
cons distance estimation, the MDS-MAP (p) performs ex-
actly as the MDS-MAP. With large localization areas, the
MDS-MAP (p) and the LaMSM performs better than the
trilateration and the MDS-MAP, since the inter-beacon dis-
tances are never estimated using more than one hop. Based
on the simulated tests the LaMSM is chosen to be used on
the proposed auto-localization algorithm.

6. Evaluation on an ultrasonic LPS

In this section the linearized auto-localization method
is compared with the inverse positioning method pre-
sented in [2]. The test is performed on the 3DLocus system
[3], shown in Fig. 9, which is an acoustic LPS composed by
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2D positioning algorithms.
seven beacons deployed on a cell of 2.8 m � 2.8 m � 2.8 m.
Since the inverse positioning method requires the exact
position of the mobile node, a Staübli Unimation industrial
robotic arm with a 50 lm accuracy is used for positioning
such node.
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A total of four measurement points were used to locate
the beacons with the inverse positioning method. For the
linearized auto-localization method a circular path of nine
measurement points with unknown positions were used.
For evaluation purposes, a total of one hundred measure-
ments were made on each point. The distance measure-
ments obtained with the 3DLocus presented a standard
deviation of 0.23 mm. The nodes’ configuration used in
the evaluation and the beacons’ estimation obtained with
the linearized auto-localization method and with the in-
verse positioning method is shown in Fig. 10.

In Fig. 11 the beacons’ estimation obtained on several
trials with the linearized auto-localization method its
shown on the X–Y plane. The 90% confidence ellipses pre-
sents a maximum variation of 1 cm on each axis between
all estimates. Also, the estimated position of the beacons
obtained with the inverse positioning method (used as ref-
erence) is shown. It can be seen that our method’s solution
Beacon 1 

Stäubli Robotic 
arm

Beacon 7 

Beacon 2 

Beacon 6 

Beacon 3 

Beacon 5 

Beacon 4 

Mobile node

Fig. 9. 3Dlocus acoustic localization system.
is close to the one obtained with the inverse positioning
though there is a small offset between the estimated posi-
tions. This solution could be used as a first estimation of
the beacons’ position that later can be improved if neces-
sary. Here, with an offset around 1.5 cm, any optimization
algorithm will easily find a more accurate solution.

Fig. 12 shows the average and maximum auto-localiza-
tion difference, on each axis, of the linearized algorithm
compared with the inverse positioning method. Since bea-
con one is used as origin no errors are present. On the other
beacons the higher differences are seen on axis Z. Although
the cell structure of the 3DLocus is positioned parallel to
the floor, it seems that there is a small inclination that
causes the altitude variation on the beacons. Since on the
linearized method it is assumed that the beacons are on
a plane parallel to the mobile path, any difference of alti-
tude is reflected on Z axis. On the other axes the average
difference is below one centimeter, and the maximum ob-
tained on all tests is below 1.5 cm. The results indicate that
the linearized method has a good accuracy in the auto-
localization of beacon nodes.
7. Conclusions

In this paper a new solution for the auto -localization
problem of 3D LPSs was presented based on the distance
measurements between co-planar beacons nodes and a
mobile one. Both, beacons and mobile locations, were un-
known. While other techniques require an external posi-
tioning system (e.g., a second LPS or an odometric
sensor) to estimate the positions of the mobile node, the
proposed method uses only the measurements available
on the LPS being located. The method is based on the line-
arization of the trilateration equations for three beacons by
grouping nonlinear terms in additional variables. Since the
linearized equations provide a closed-form solution, the
method does not present local minima errors. By moving
the mobile node on different paths the distance between
more than three beacons can be obtained.

With the inter-beacon estimated distances all the LPS’
beacons can be located using a 2D localization algorithm.
Different localization methods were evaluated in order to
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obtain the best solution with LPSs deployed on small and
large areas. The simulations showed that the LaMSM meth-
od was best suited for large areas (where the inter-beacon
distance estimations were few) and also on small areas
(where most of the inter-beacon distances were available).
Besides, the solutions obtained can be later improved by
using them as initial conditions on other auto-localization
techniques based on Bayesian or optimization methods.

Finally the method was evaluated on an acoustic LPS,
the 3DLocus, and compared with the inverse positioning
method. The results showed mean positioning differences
below 1 cm on axes X and Y for each beacon. Higher differ-
ences are found in axis Z due to the assumption that the
beacons are on the same plane. The proposed method
showed a good estimation of the beacons’ position com-
pared with one that requires a costly second positioning
system, like the high-precision Staübli Unimation indus-
trial robotic arm. The obtained results are very promising
for a practical auto-calibration method that only requires
to move a node around the localization area, without need-
ing an initial estimation of the beacons’ position or any
external equipment.

Future work will focus on studying the effect that the
node geometry has on the precision obtained by the linear
equations. We expect an effect similar to the Geometric
Dilution of Precision (GDOP) on GPS systems, though more
complex since the measurement errors affect the matrix A
and B of the AX = B solution (in GPS the GDOP only takes
into account the noise in B).
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Appendix A. Linearization of the trilateration equations

Our goal is to write an equation that includes the un-
known inter-beacon distances {d12, d13, d23} and the mea-
sured distances {d14, d24, d34}. Based on the LPS
configuration of Fig. 2, we express the volume Vt of the tet-
rahedron formed by the beacon nodes {N1, N2, N3} and the
virtual node N4 using the Cayley–Menger determinant:

288V2
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By expanding (A.1) and dividing all by 1
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we obtain:
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In order to linearize (A.2) we begin grouping all nonlin-
ear terms of the unknown distances in additional
variables:
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We define the new unknown variables Xi of the linear-
ized equation, where each variable corresponds with the
ith element of matrix X defined in (4):
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Using (3) we obtain the linearized trilateration
equations:
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We can apply (A.5) (obtained for the virtual node k = 4)
to the remaining virtual nodes k = 5, . . . , 9 in order to ob-
tain the linearized trilateration equations. These equations
are presented in matrix form in Section 3.1.

In order to obtain the final positions of the beacons {N1,
N2, N3} from the solution obtained in (4), based on the LPS
configuration of Fig. 2, we use the inter-beacon distance
equations:
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Expanding (A.8) and using (A.6) and (A.7) we obtain:
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Using (A.9) we obtain an expression for N3x:

N3x ¼
d2

13 þ d2
12 � d2

23

2d12
; ðA:10Þ

and from (A.7) we obtain N3y:
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From A.6, A.10 and A.11 we obtain the inter-beacon
coordinates expressed in (7).
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