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Abstract

In this paper we describe an ultrasonic inspection system used for detection of
surface defects in food cans. The system operates in pulse-echo mode and analyzes
the 220 kHz ultrasonic signal backscattered by the object. The classification of sam-
ples into valid or defective is achieved with χ2 statistics and the k-nearest neighbour
method, applied to features computed from the envelope of the ultrasonic echo. The
performance of the system is demonstrated empirically in the detection of the presence
of the pull tab on the removable lid of easy-open food cans, in a production line. It is
found that three factors limit the performance of the classification: the misalignment
of the samples, their separation of the ultrasonic transducer, and the vibration of the
conveyor belt. When these factors are controlled, classification success rates between
94 and 99 % are achieved.

Keywords: Ultrasonic inspection, quality control, signal processing.

1 Introduction

Ultrasonic sensors are commonly used for monitoring industrial processes [1], for exam-
ple as counters of items on a conveyor belt, presence detectors, liquid level measurement,
flowmeters, etc. Besides these relatively simple tasks, advances in sensor technology and
signal processing permit to use ultrasonic technology for more complex purposes, like the
study of the surface of objects, and thus be useful for sample classification or detection
of surface defects. In this aspect, ultrasound-based inspection techniques can be competi-
tive with standard techniques like computer vision, with the advantages of low cost, short
inspection times, small computational requirements, and minimum interference with ex-
isting industrial setups. Besides, they can be operative for the inspection of objects with
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low visual contrast, or in low light or dusty environments where computer vision systems
might experience difficulties.

Much research is reported in the literature regarding ultrasonic surface inspection tech-
niques. Mart́ın [2] used 220 kHz piezoelectric transducers to distinguish between the flip
sides of a coin by decomposition of the ultrasonic signal and correlation with previously
stored reference templates. Error rates of about 1 % are obtained in laboratory conditions,
which include positioning of the object in an optical bedplate, reduction of vibration and
air motion, and signal averaging. Fritsch [3] also achieved a high success rate in the clas-
sification of six simple objects in static operation, using a single emitter-receiver 220 kHz
transducer. In this system the ultrasonic signal is first deconvolved to find the impulse
response and increase the spatial resolution, and the peak and width of the ultrasonic
signals are used for the classifying process. This technique is well suited for the kind
of samples chosen for the demonstration, which are stepped objects of different heights.
Caicedo [4] built an object classifier system which worked by extracting a set of features
(parameters) of the envelope of the reflected ultrasonic echoes. Two classification experi-
ments are described in his work: the first is a set of cylinders with diameters ranging from
52 to 60 mm, and the second a set of gears with 24 to 44 teeth. In both cases close to
100 % of success is achieved; however, a static configuration is used, with the pieces being
carefully positioned in an optical bench.

The use of multi-transducer arrays permits to extract more information about the object
under study. For example, Lázaro [5] employed an array of nine 40 kHz emitters and
receivers for detection of notches and grains of 5 mm in brake drums and discs. By
extracting a set of parameters (like amplitude peak, time of arrival of the pulse, etc) from
the envelope of the ultrasonic echoes, and processing the data with a neural network, a
defect detection capability above 80 % was obtained. Long processing times (about 10 s)
and the need for a careful positioning of the piece under study are pointed out in their
work. Watanabe [6] has used an 8×8 transducer receiver array operating at 40 kHz and a
single emitter. For each received signal, the amplitude and phase are computed, and the
resulting matrix processed via the inverse Fourier transform to reconstruct an acoustical
image of the object. The data is fed into a neural network which permits classification
of a set of 26 different objects (shaped as the alphabet letters). The success rate ranges
between 90 and 100 % but drops to 75 % when the letters are rotated in random angles.

Finally, ultrasonic scanning (either mechanical or electronic) and focusing of the ultrasonic
signals can be used to produce images of the objects of high quality, ultimately limited by
diffraction. Lach [7] uses a broadband (80-280 kHz) transducer to scan the piece under
study along a line, obtaining a set of 220 points for each object (in the two-dimensional
frequency-angle space); and principal component analysis and the k -nearest neighbour
techniques for feature selection and classification. Three objects of thickness 0.5 mm are
classified with a success rate of 85-96 %, allowing for 10 mm displacements and up to
±6o rotations. Brudka [8] uses an array of 40 ultrasonic emitter/receiver pairs working
at 150 kHz to form images of objects in a conveyor belt, which are processed by a neural
network to assist a robotic arm in the task of grasping the object. In the system described
by Robertson [9] wideband capacitive transducers with a cylindrical geometry operating
at 500 kHz were used to produce a high quality image of a coin, with axial resolution on
the order of 5 µm and lateral resolution under 1 mm. Acquisition and processing of the
ultrasonic signals are reported to last several hours.
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Figure 1: Food cans with and without the “easy-open” pull tab on the top cover.

Most of the authors cited above have noted the high sensibility of the ultrasonic systems to
vibrations and the need for careful positioning of the examined objects; factors which are
disadvantageous for their use in practical industrial problems. In this paper we introduce
an ultrasonic inspection system based on a single emitter/receiver transducer, demon-
strate its performance in a quality control problem from the food industry, and study the
limitations set up on its performance by the perturbing factors indicated above.

2 Problem definition

The ultrasonic inspection technique will be applied to an industrial quality control process:
checking the presence of the pull tab in easy-opening food packages (see figure 1). During
the manufacture of the can, the pull tab is attached to a rivet which has been formed
on its top cover; any failure in that process may cause metal fracture of the rivet or the
scoreline (the thinner line along the perimeter of the can cover). The presence and correct
positioning of this pull tab should be checked previous to the packaging of the can, because
otherwise the product might be difficult to open or its contents might leak out.

Typically this problem is solved with computer vision; however we will show in this paper
how it can be handled efficiently with ultrasonic technology. For this purpose we installed
an inspection station in a section of production line, which consists of a 90 mm wide
cardanic belt. The diameter of the can is 65 mm, and they are transported at a speed of
approximately 0.5 m/s. The measured height of the pull tab ring over the top surface of
the can is 2.4 mm.

3 System description

3.1 Inspection station

The ultrasonic inspection station (see figure 2) is placed on a chassis mounted on top of
the transporting belt. The ultrasonic transmitter/receiver is a piezoelectric transducer by
Massa Products Co., model E-188/220, operating at 220 kHz and with a bandwidth of
25 kHz. Errors caused by lateral displacements of the items are minimized by a careful
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Figure 2: Block diagram of the ultrasonic inspection system.

alignment of the ultrasonic transducer, and use of a guiding element in the belt to position
the cans within a 5 mm margin (a tighter adjust causes jamming of the cans). However,
the rotation angle of the can (with respect to the pull tab) is not controlled in our system;
instead we have chosen the same physical transducer for emission and reception of the
ultrasonic signal in order to obtain maximum rotational symmetry.

When the can arrives at the inspection station, it blocks a laser beam incident on a
photodiode, triggering a microcontroller (Microchip’s PIC16C76) to output a square train
consisting of five pulses at the transducer’s resonant frequency. A driver raises the peak
to peak voltage to 50 volts before exciting the piezoelectric transducer, in order to obtain
higher ultrasonic signal level. The received signal is capacitively decoupled from the
excitation, and then amplified in three stages. A four-pole Bessel filter is used to attenuate
the noise out of the 190-250 kHz band. The computer can trigger the microcontroller
again to obtain multiple waveforms during the passing of the can. The ultrasonic signal
is captured to the PC with an acquisition card (Adlink PCI9812) at a sampling rate of
2 MHz, well above the Nyquist rate. Synchronization is achieved with the trigger signal
from the photodiode.

The control program, which runs on the computer, is written in the Measurement Stu-
dio/CVI environment, and performs the tasks of acquisition and processing of the ultra-
sonic signal, parameter extraction and classification, and user interface, all of which are
completed during the typical 100 ms time interval taken by the can to travel through the
inspection system.

Although the described system has been designed to facilitate the development of the
demonstrator, and consequently general purpose instruments (PC, acquisition card, etc)
have been used, a final industrial version would only require the ultrasonic transducer, the
associated electronics, and a digital signal processor (DSP) for the real time processing and
classification tasks, all of which are inexpensive when compared to equivalent computer
vision systems.
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3.2 Physical constraints

Several physical constraints must be considered in the design of a pulse-echo ultrasonic
inspection system [10]. The resolution attainable in the axial and lateral directions de-
pends on the ultrasonic frequency f0 — higher frequencies permit smaller defects to be
detectable [9]. However, the attenuation α of the ultrasonic wave increases as the frequency
squared, which quickly degrades the signal to noise ratio (SNR) and the repeteability of
the measurements; for that reason, air coupled ultrasonic systems usually operate at fre-
quencies below 1 MHz. Considering the setup of figure 3, the sound pressure level (SPL)
of the reflected wave decreases steeply with the separation R:

SPL(R) = SPL0 − 20 log10(2R/R0) − (20 log10 e)α(2R − R0) dB, (1)

where SPL0 and R0 are reference levels, as given in the manufacturer’s datasheet. At
220 kHz, the attenuation coefficient is α = 8.7 dB/m.

The axial resolution, as well as the effective SNR, can be enhanced by the processing gain
obtained by modulating and coding of the ultrasonic signal. This might be needed in
situations of great attenuation of the ultrasonic signal; for example, chirp signals are used
in the examination of the contents of food cans to compensate for the great attenuation
caused by through transmission of ultrasonic pulses [11]. In our application, with relatively
high SNR, we have used a simple 5 cycle pulse train.

The area insonified by the ultrasonic pulse (with diameter L in figure 3) is related to the
transducer diameter D and the distance to the object R by:

L = 2R tan γ/2, (2)

where the angle γ is, in the flat piston approximation [12]:

sin γ/2 = 0.514c/Df, (3)

with c being the speed of sound. From these equations, an increase in frequency cor-
responds to a smaller covered area. Summarizing, there exists a tradeoff between three
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relevant parameters of the ultrasonic inspection technique: scanned area (size of the in-
spected object), axial resolution (size of the detectable defect) and SNR (repeatability
between samples).

In our case, the emission/reception lobe is measured to be γ = 10◦ (-3 dB), which, for
a transducer-object separation of R = 100 mm, corresponds to an insonified region of
diameter L = 17 mm. The length of the pull tab is 35 mm, and it is attached to a point
close to the perimeter of the can, so in conditions of good centering of the ultrasonic
transducer, this setup guarantees that a significant portion of the pull tab will be insonified
and provides a good balance between covered area and SNR.

3.3 Signal Processing and Parameter Extraction

After signal acquisition, the ultrasonic echo is processed to extract the parameters which
will serve for the classification process. The first step consists in eliminating the ultrasonic
carrier of frequency f0, using the Hilbert transform to compute the complex envelope of
the acquired signal. This process is carried out in the computer, but future industrial
prototypes can benefit from standard in-phase/quadrature demodulators, or efficient DSP-
based implementations [13], for this task.

Several choices for the definition of the parameter set are reported in the literature. Legen-
dre [14], working in ultrasonic Non Destructive Testing of plates, performs a wavelet de-
composition of the envelope of the ultrasonic wave and uses as parameters the amplitude
coefficients; other authors [15] prefer an orthogonal basis formed by a set of Laguerre
functions, which are well suited for the the typical ultrasonic waveforms found in air
applications. We have found that the following set of parameters, which have physical
meanings, yields good classification results:

• Maximum (Max) value of the envelope, in V.

• Time of flight (TOF) of the ultrasonic echo, obtained by linear fitting of a set of
discrete points of the rising edge of the envelope of the ultrasonic echo. It is measured
in µs.

• Mean slope (S) of the rising edge of the signal, obtained also by linear fitting. It is
normalized by the parameter Max, and measured in (µs)−1.

• Energy (E) of the wave, computed by summing the squares of all the discrete points
of the envelope, and measured in V2.

As was mentioned in section 3.1, for each can, two different pulse-echo emissions are
performed (corresponding to slightly displaced snapshots of the same object), and therefore
the feature vector x for every item is constructed as:

x = [Max1 TOF1 S1 E1 Max2 TOF2 S2 E2]
T . (4)

The classification methods described in the next section are based in the distance between
samples, and for that reason the parameters of equation 4 are scaled by their respective
variances so that they become adimensional and with relative equal magnitude.
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3.4 Classification

The classification problem consists in mapping points of the feature space defined by the
parameters into a limited number of classes [16]. For the problem considered in section 2
the classifier is reduced to a decision between only two classes: with and without pull
tab. Following the practice of the decision theory, we designate by H0 the hypothesis
that the can has the pull tab, and by H1 the hypothesis that the pull tab is missing.
The performance of the classification system is measured by two statistical parameters:
the detection probability Pd (the correct detection of the event H1); and the false alarm
probability Pfa (the case that the tab was correctly positioned, but the system chose
hypothesis H1 instead of H0). A general decision strategy based on the Neyman-Pearson
criterion [17] depends on whether the a priori probabilities P (H0) and P (H1) are known
(or can estimated from the data), as well as on the costs associated with the classification
errors for the classes H0 and H1.

Two decision algorithms are considered in this paper. The first is based on a χ2 statistics
centered on one of the hypotheses. By considering the class with smaller variance of the
data, which empirically is found to be the set H1 of samples without the pull tab, we can
compute the covariance matrix:

C1 = E{(x1 − x1)(x1 − x1)
T },

where E{·} is the expectation operator and x1 = E{x1} is the vector parameter mean of the
samples of class H1. Then the Mahalanobis distance r2 of a new sample with parameter
vector x to the center of the class H1 is [16]:

r2 = (x − x1)
T inv[C1](x − x1). (5)

The distance r2 follows a χ2 distribution function, with a number of degrees of freedom
equal to the number of parameters of vector x defined in equation 4, and can be used to
discriminate between classes H0 and H1. The threshold r2

th
which separates the probabil-

ity density functions P (r2|H0) and P (r2|H1) is taken according to the Neyman-Pearson
criterion mentioned above.

The second technique used in this paper is a machine learning algorithm: the k-nearest
neighbour classification method [16]. In this method we store a number K of known
parameter samples for each class. When a new can is evaluated, the distances of the
sample vector to the 2K stored reference vectors are computed, and the k samples with
minimum distance are extracted. The sample under evaluation is assigned to the class
which has more elements in this k-neighbours reduced set.

The performance of both methods for our classification problem is studied experimentally
in the next section.

4 Empirical Results

A typical ultrasonic signal reflected from a can with the experimental setup described
in the last section is shown in figure 4. The dead zone corresponds to the coupling of
the emission and reception processes. We show the portion of the waveform used in the
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Figure 4: Typical echo signal received from a can. Part (a) shows the complete echo wave-
form, with the dead zone, the signal used for the analysis (dashed box) and a secondary
echo caused by a reflection on the support of the transducer. In part (b) we show echoes
from cans with and without the pull tab on the top cover.

computation of the parameters and typical signals for cans with and without the pull tab.

A set of 12 different cans, half of them with the pull tab correctly positioned on the opening
lid and the rest without it were placed on the transporting belt, which was kept functioning
until 1200 measurements were completed. Scatter plots of the set of parameters defined in
section 3.3 are shown in figure 5 (only the parameters corresponding to the first ultrasonic
emission are shown). The variance of the parameters corresponding to cans with the
pull tab (H0) is higher than of those without it. This can be attributed to variations of
the height of the pull tab from one can to the next, to the small lateral displacements
permitted by the alignment device, and by the fact that the inspection system does not
control the angular orientation of the can.

We used the Principal Component Analysis (PCA) method [16] to determine which com-
bination of parameters yielded maximum separabality. It was found that the most dis-
criminative parameters were the slope S and the time of flight TOF, while inclusion of the
energy E yielded marginal improvement, and that of the maximum Max none at all. As
a result, in the remaining of this paper, the following parameter vector will be employed:
x = [S1 TOF1 S2 TOF2]

T .

4.1 Comparison of classification methods

The χ2 statistics is used first in the classification process; as it was discussed above, it
is preferable to use the most compact class in the feature space (H1), as a center for the
discrimination. 120 samples were used to compute the statistical parameters (mean vector
and covariance matrix) of class H1. the results of the χ2 classification process are shown in
the first entry of table 1 and graphically in figure 6. The threshold for separation between
classes H0 and H1 is chosen at the point where P (r2|H0) = P (r2|H1), which maximizes
the probability of correct classification assuming that cans with and without pull tab are
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Figure 5: Scatter plots of the parameters: (a) maximum (Max) versus time-of-flight
(TOF); and (b) slope (S) versus energy (E). Cans with pull tab (o) and without pull
tab (*).

equally likely to be present. Under these conditions, the detection probability is found
to be Pd = 0.995, and the false alarm probability Pfa = 0.001, with a total classification
success of 0.994. The probability density functions of the classes H0 and H1 in figure 6
are clearly separated.

For comparison, the same data is analyzed with the k-nearest neighbours method. The
number of reference samples is 2K = 120 samples, half from each class; from this set, the
k = 5 nearest neighbours are considered in the decision. The results are a detection prob-
ability Pd = 0.998 and a false alarm probability Pfa = 0.058, with a correct classification
rate of 0.940. In figure 7 we show the scatter plot of the parameters, with the missclassified
samples marked in black, and a histogram of the number of neighbours for each class. As
can be seen, some of the cans with pull tab are actually closer (in the feature space) to
those without the pull tab, causing a relatively high percentage of false alarm errors. Due
to its better performance, we will use only the χ2 statistical method for the remaining of
this paper.

4.2 Sensibility to transporting conveyor speed and separation

As was stated in section 3.2, the classification of objects with ultrasonic sensors is very
sensitive to the transducer-object distance, as well as to vibrations of the transporting
element; these effects are analyzed in this section.

Increasing the separation between the transducer and the object under study decreases the
SNR and, as a consequence, the repeatability between samples. In figure 8 and the second
row of table 1 we show the effect of rising the transducer by 47 mm, which, according to
equation 1, causes a signal drop of 10 dB. The performance of the classification algorithm
falls to Pd = 0.940 and Pfa = 0.085 (total classification success of 0.855) as the scatter
plots of the parameters overlap partially.

Changes in the transporting speed have a more drastic effect on the ultrasonic signals,
because they cause vibrations of the sample, and further spread the parameters scatter
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Figure 6: Scatter plots of the parameters slope (S) and time-of-flight (TOF), and PDFs
P (r2|H0) and P (r2|H1) for a low separation, low speed situation. Cans with pull tab (o,
—) and without pull tab (*, —).
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Table 1: Results of the χ2 classification process in three different cases. The columns cor-
respond to: speed of the conveyor belt, separation between transducer and can, standard
deviations of the parameters slope and time of flight (for cans with and without pull tab),
and the obtained probabilities of detection, false alarm, and correct sample classification.
Speed Separation σS (µs−1) σTOF (µs) Pd Pfa Pd − Pfa

(m/s) (mm) with without with without

0.40 101 0.0068 0.0011 6.1 0.58 0.995 0.001 0.994
0.44 148 0.0043 0.0012 13 1.1 0.940 0.085 0.855
0.54 122 0.0070 0.0038 12 3.2 0.873 0.154 0.719

plots. When the speed of the conveyor belt is increased by 35 % (from 0.40 m/s to
0.54 m/s), we obtain the results shown in figure 9. The probability of correct detection
drops to only Pd = 0.873 with a false alarm probability of Pfa = 0.154 and a total
classification success of 0.719.

The results of the three experiments are summarized in table 1. For the cans with the pull
tab the parameters have always high variance, but do not change significantly with the
speed of the belt, so our interpretation is that they are due to the changes of position and
orientation of the samples with respect to the ultrasonic transducer. The corresponding
values for cans without the pull tab are 2–10 times lower, but they increase sharply with
the conveyor belt speed, which seems to indicate that they are caused by the vibrations
of the samples.

In any case, it is clear that the performance of the ultrasonic inspection system degrades
with the transporting speed and the transducer/object distance. The first factor is cer-
tainly an obstacle for industrial applications; however a conveyor belt with less vibration
and controlled positioning can be designed for placement of the items at the point of ul-
trasonic inspection (in this sense, the cardanic belt used in the research described in this
paper is not the most favorable transporting mechanism). The second factor sets up a
limit on the size of the object which can be covered with a single transducer emission.
Possible solutions to cover larger objects include scanning of the area with several con-
secutive emissions or the use of more transducers—this approach is feasible due to the
relative low cost of ultrasonic sensors and their related electronics.

5 Conclusions

In this paper we have described and built an ultrasonic inspection system and used it for
surface examination of food packages in a production line. Under controlled conditions of
speed and alignment of the samples, the system shows up to 99 % success in the problem
of determining the presence of the pull tab ring in food cans.

The experimental work with the inspection station confirms that three factors control the
performance of the ultrasonic system: alignment of the samples under study with respect
to the transducer, separation between sample and transducer, and, most importantly, the
vibrations set up by the conveyor belt. A proper design of the industrial transporting
mechanism can overcome these difficulties, and, under this assumption, ultrasonic sur-
face inspection can be cost and performance-wise competitive with other technologies like
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computer vision.
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